Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Nanosci Nanotechnol ; 18(5): 3548-3556, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29442865

ABSTRACT

To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

2.
J Nanosci Nanotechnol ; 12(4): 3665-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22849192

ABSTRACT

ZnO films co-doped with fluorine and hydrogen were prepared on Corning glass by radio frequency magnetron sputtering of ZnO targets with varying amounts of ZnF2 in H2/Ar gas mixtures of varying H2 content. The ZnO films' electrical, optical, and structural properties in combination with their compositional properties were investigated. A small addition of H2 to the sputtering gas caused a drastic increase of Hall mobility with a marginal increase in carrier concentration, indicating an effective passivation of grain boundaries due to hydrogenation. For further increase of H2 in sputter gas, the Hall mobility remained at a relatively constant level while the carrier concentration increased steadily. Most of the ZnO films co-doped with fluorine and hydrogen showed average transmittance higher than 83% in the 400-800 nm range, while the average absorption coefficients were lower than 600 cm(-1), implying very low absorption loss in these films. It was discovered that the fabrication of ZnO films with a Hall mobility higher than 40 cm2/Vs and a very low absorption loss in the visible range is possible by co-doping hydrogen and fluorine.

3.
ACS Appl Mater Interfaces ; 11(35): 31923-31933, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31393693

ABSTRACT

Achieving favorable band profile in low-temperature-grown Cu(In,Ga)Se2 thin films has been challenging due to the lack of thermal diffusion. Here, by employing a thin Ag precursor layer, we demonstrate a simple co-evaporation process that can effectively control the Ga depth profile in CIGS films at low temperature. By tuning the Ag precursor thickness (∼20 nm), typical V-shaped Ga gradient in the copper indium gallium diselenide (CIGS) film could be substantially mitigated along with increased grain sizes, which improved the overall solar cell performance. Structural and compositional analysis suggests that formation of liquid Ag-Se channels along the grain boundaries facilitates Ga diffusion and CIGS recrystallization at low temperatures. Formation of a fine columnar grain structure in the first evaporation stage was beneficial for subsequent Ga diffusion and grain coarsening. Compared to the modified co-evaporation process where the Ga evaporation profile has been directly tuned, the Ag precursor approach offers a convenient route for absorber engineering and is potentially more applicable for roll-to-roll fabrication system.

4.
J Nanosci Nanotechnol ; 7(1): 293-7, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17455494

ABSTRACT

An experimental study is conducted toward understanding the mechanism of nonlinear optical properties of PbTe thin film that were demonstrated potentially usable for nano-optical memory based on super-resolution technology. By way of a real time optical-electrical characterization of a PbTe thin film device, it is found that absorption coefficient decreases with increasing laser power, accompanied by increase in carrier concentration. From z-scan measurements, nonlinear optical coefficient due to a long pulse (1 micros) z-scan is found nearly 3 order of magnitude higher than the one due to a short pulse (30 ps) z-scan when input energy density is relatively comparable. Conceivably, these experimental findings call for a physical model that is able to account for the prevailing role of a thermal contribution within the framework of absorption saturation by band filling. We speculate that the absorption saturation might be enhanced dramatically by making various indirect interband transitions possible via participation of phonons in a photonic excitation process.


Subject(s)
Computer Storage Devices , Information Storage and Retrieval , Lead/chemistry , Nanotechnology/instrumentation , Nanotechnology/methods , Tellurium/chemistry , Absorption , Electrochemistry/methods , Lasers , Models, Statistical , Particle Size , Photons , Surface Properties , Time Factors
5.
Sci Rep ; 7(1): 15723, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29146956

ABSTRACT

A monolithic tandem solar cell consisting of crystalline Si (c-Si)/indium tin oxide (ITO)/CuGaSe2 (CGSe) was demonstrated by stacking a CGSe solar cell on a c-Si/ITO solar cell to obtain a photovoltaic conversion efficiency of about 10%. Electrical analyses based on cell-selective light absorption were applied to individually characterize the photovoltaic performances of the top and bottom subcells. Illumination at a frequency that could be absorbed only by a targeted top or bottom subcell permitted measurement of the open-circuit voltage of the target subcell and the shunt resistance of the non-target subcell. The cell parameters measured from each subcell were very similar to those of the corresponding single cell, confirming the validity of the suggested method. In addition, separating the light absorption intensities at the top and bottom subcells made us measure the bias-dependent photocurrent for each subcell. The series resistance of a c-Si/ITO/CGSe cell subjected to bottom-cell limiting conditions was slightly large, implying that the tunnel junction was a little resistive or slightly beyond ohmic. This analysis demonstrated that aside from producing a slightly resistive tunnel junction, our fabrication processes were successful in monolithically integrating a CGSe cell onto a c-Si/ITO cell without degrading the performances of both cells.


Subject(s)
Absorption, Radiation , Electricity , Selenium/chemistry , Silicon/chemistry , Solar Energy , Sunlight
6.
ACS Appl Mater Interfaces ; 8(37): 24585-93, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27585315

ABSTRACT

The single-bath electrochemical deposition of CuInSe2 often leads to short-circuit behavior of the resulting solar cells due to the high shunt conductance. In this study, in an attempt to resolve this problem, the influence of the Se precursor concentration (CSe) on electrodeposited CuInSe2 films and solar cell devices is examined in the CSe range of 4.8 to 12.0 mM in selenite-based aqueous solutions containing Cu and In chlorides along with sulfamic acid (H3NSO3) and potassium hydrogen phthalate (C8H5KO4) additives. As CSe increases, the CuInSe2 layers become porous, and the grain growth of the CuInSe2 phase is restricted, while the parasitic shunting problem was markedly alleviated, as unambiguously demonstrated by measurements of the local current distribution. Due to these ambivalent influences, an optimal value of CSe that achieves the best quality of the films for high-efficiency solar cells is identified. Thus, the device prepared with 5.2 mM Se exhibits a power-conversion efficiency exceeding 10% with greatly improved device parameters, such as the shunt conductance and the reverse saturation current. The rationale of the present approach along with the physicochemical origin of its conspicuous impact on the resulting devices is discussed in conjunction with the electro-crystallization mechanism of the CuInSe2 compound.

7.
ChemSusChem ; 9(5): 439-44, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26822494

ABSTRACT

A highly efficient Cu2 ZnSn(S,Se)4 (CZTSSe)-based thin-film solar cell (9.9%) was prepared using an electrochemical deposition method followed by thermal annealing. The Cu-Zn-Sn alloy films was grown on a Mo-coated glass substrate using a one-pot electrochemical deposition process, and the metallic precursor films was annealed under a mixed atmosphere of S and Se to form CZTSSe thin films with bandgap energies ranging from 1.0 to 1.2 eV. The compositional modification of the S/(S+Se) ratio shows a trade-off effect between the photocurrent and photovoltage, resulting in an optimum bandgap of roughly 1.14 eV. In addition, the increased S content near the p-n junction reduces the dark current and interface recombination, resulting in a further enhancement of the open-circuit voltage. As a result of the compositional and interfacial modification, the best CZTSSe-based thin-film solar cell exhibits a conversion efficiency of 9.9%, which is among the highest efficiencies reported so far for electrochemically deposited CZTSSe-based thin-film solar cells.


Subject(s)
Copper/chemistry , Electroplating , Selenium/chemistry , Solar Energy , Tin/chemistry , Zinc/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
8.
Sci Rep ; 5: 7690, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25573530

ABSTRACT

The cell-to-module efficiency gap in Cu(In,Ga)Se2 (CIGS) monolithically integrated solar modules is enhanced by contact resistance between the Al-doped ZnO (AZO) and Mo back contact layers, the P2 contact, which connects adjacent cells. The present work evaluated the P2 contact resistance, in addition to the TCO resistance, using an embedded transmission line structure in a commercial-grade module without using special sample fabrication methods. The AZO layers between cells were not scribed; instead, the CIGS/CdS/i-ZnO/AZO device was patterned in a long stripe to permit measurement of the Mo electrode pair resistance over current paths through two P2 contacts (Mo/AZO) and along the AZO layer. The intercept and slope of the resistance as a function of the electrode interval yielded the P2 contact resistance and the TCO resistance, respectively. Calibration of the parasitic resistances is discussed as a method of improving the measurement accuracy. The contribution of the P2 contact resistance to the series resistance was comparable to that of the TCO resistance, and its origin was attributed to remnant MoSe2 phases in the P2 region, as verified by transmission electron microscopy.

9.
ACS Appl Mater Interfaces ; 6(1): 259-67, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24328265

ABSTRACT

We demonstrate here that an improvement in the green density leads to a great enhancement in the photovoltaic performance of CuInSe2 (CISe) solar cells fabricated with Cu-In nanoparticle precursor films via colloidal solution deposition. Cold-isostatic pressing (CIP) increases the precursor film density by ca. 20%, which results in an appreciable improvement in the microstructural features of the sintered CISe film in terms of a lower porosity, a more uniform surface morphology, and a thinner MoSe2 layer. The low-band-gap (1.0 eV) CISe solar cells with the CIP-treated films exhibit greatly enhanced open-circuit voltage (V(OC), typically from 0.265 to 0.413 V) and fill factor (FF, typically from 0.34 to 0.55), compared to the control devices. As a consequence, an almost 3-fold increase in the average efficiency, from 3.0 to 8.2% (with the highest value of 9.02%), is realized. Diode analysis reveals that the enhanced V(OC) and FF are essentially attributed to the reduced reverse saturation current density and diode ideality factor. This is associated with suppressed recombination, likely due to the reduction in recombination sites at grain/air surfaces, intergranular interfaces, and defective CISe/CdS junctions. From the temperature dependences of V(OC), it is revealed that CIP-treated devices suffer less from interface recombination.

10.
Nanoscale ; 6(20): 11703-11, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25091974

ABSTRACT

Efficient Cu2ZnSnSe4 (CZTSe) solar cells were fabricated with a simple, environmentally friendly, and scalable synthetic method for Cu2ZnSnS4 (CZTS) nanocrystals. CZTS nanoparticles were mechanochemically synthesized from elemental precursors on a relatively large scale (∼20 g), during which no solvents or additives were used, thus alleviating the complex process of particle synthesis. An analysis of the time evolution of the crystalline phase and morphology of precursor powders revealed that the formation of the CZTS compound was completed in 0.5 h once initiated, suggesting that the mechanochemically induced self-propagating reaction prevails. CZTS ink was prepared by dispersing the as-synthesized nanoparticles in an environmentally benign solvent (160 mg mL(-1) in ethanol) without using any additives, after which it was cast onto Mo-coated glass substrates by a doctor-blade method. Subsequent reactive annealing at 560 °C under a Se-containing atmosphere resulted in substantial grain growth along with the nearly complete substitution of Se. The CZTSe solar cells therefrom exhibited power conversion efficiency levels as high as 6.1% (based on the active area, 0.44 cm(2)) with a relatively high open-circuit voltage (0.42 V) in comparison with the bandgap energy of 1.0 eV.

11.
ChemSusChem ; 7(4): 1073-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24692285

ABSTRACT

Highly efficient copper-zinc-tin-selenide (Cu2ZnSnSe4 ; CZTSe) thin-film solar cells are prepared via the electrodepostion technique. A metallic alloy precursor (CZT) film with a Cu-poor, Zn-rich composition is directly deposited from a single aqueous bath under a constant current, and the precursor film is converted to CZTSe by annealing under a Se atmosphere at temperatures ranging from 400 °C to 600 °C. The crystallization of CZTSe starts at 400 °C and is completed at 500 °C, while crystal growth continues at higher temperatures. Owing to compromises between enhanced crystallinity and poor physical properties, CZTSe thin films annealed at 550 °C exhibit the best and most-stable device performances, reaching up to 8.0 % active efficiency; among the highest efficiencies for CZTSe thin-film solar cells prepared by electrodeposition. Further analysis of the electronic properties and a comparison with another state-of-the-art device prepared from a hydrazine-based solution, suggests that the conversion efficiency can be further improved by optimizing parameters such as film thickness, antireflection coating, MoSe2 formation, and p-n junction properties.


Subject(s)
Copper/chemistry , Electric Power Supplies , Electroplating , Selenium/chemistry , Solar Energy , Tin/chemistry , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL