Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Alzheimers Dement ; 20(2): 1284-1297, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985230

ABSTRACT

INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aß42, Aß40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10 weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI ) and between-subject (CVG ) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG . Aß42/Aß40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aß42/Aß40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Amyloid beta-Peptides , Glial Fibrillary Acidic Protein , Biomarkers , Disease Progression , tau Proteins
2.
Alzheimers Dement ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970274

ABSTRACT

INTRODUCTION: Understanding longitudinal change in key plasma biomarkers will aid in detecting presymptomatic Alzheimer's disease (AD). METHODS: Serial plasma samples from 424 Wisconsin Registry for Alzheimer's Prevention participants were analyzed for phosphorylated-tau217 (p-tau217; ALZpath) and other AD biomarkers, to study longitudinal trajectories in relation to disease, health factors, and cognitive decline. Of the participants, 18.6% with known amyloid status were amyloid positive (A+); 97.2% were cognitively unimpaired (CU). RESULTS: In the CU, amyloid-negative (A-) subset, plasma p-tau217 levels increased modestly with age but were unaffected by body mass index and kidney function. In the whole sample, average p-tau217 change rates were higher in those who were A+ (e.g., simple slopes(se) for A+ and A- at age 60 were 0.232(0.028) and 0.038(0.013))). High baseline p-tau217 levels predicted faster preclinical cognitive decline. DISCUSSION: p-tau217 stands out among markers for its strong association with disease and cognitive decline, indicating its potential for early AD detection and monitoring progression. HIGHLIGHTS: Phosphorylated-tau217 (p-tau217) trajectories were significantly different in people who were known to be amyloid positive. Subtle age-related trajectories were seen for all the plasma markers in amyloid-negative cognitively unimpaired. Kidney function and body mass index were not associated with plasma p-tau217 trajectories. Higher plasma p-tau217 was associated with faster preclinical cognitive decline.

3.
Alzheimers Dement ; 20(4): 2340-2352, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38284555

ABSTRACT

BACKGROUND: We aimed to evaluate the precision of Alzheimer's disease (AD) and neurodegeneration biomarker measurements from venous dried plasma spots (DPSv enous) for the diagnosis and monitoring of neurodegenerative diseases in remote settings. METHODS: In a discovery (n = 154) and a validation cohort (n = 115), glial fibrillary acidic protein (GFAP); neurofilament light (NfL); amyloid beta (Aß) 40, Aß42; and phosphorylated tau (p-tau181 and p-tau217) were measured in paired DPSvenous and ethylenediaminetetraacetic acid plasma samples with single-molecule array. In the validation cohort, a subset of participants (n = 99) had cerebrospinal fluid (CSF) biomarkers. RESULTS: All DPSvenous and plasma analytes correlated significantly, except for Aß42. In the validation cohort, DPSvenous GFAP, NfL, p-tau181, and p-tau217 differed between CSF Aß-positive and -negative individuals and were associated with worsening cognition. DISCUSSION: Our data suggest that measuring blood biomarkers related to AD pathology and neurodegeneration from DPSvenous extends the utility of blood-based biomarkers to remote settings with simplified sampling conditions, storage, and logistics. HIGHLIGHTS: A wide array of biomarkers related to Alzheimer's disease (AD) and neurodegeneration were detectable in dried plasma spots (DPSvenous). DPSvenous biomarkers correlated with standard procedures and cognitive status. DPSvenous biomarkers had a good diagnostic accuracy discriminating amyloid status. Our findings show the potential interchangeability of DPSvenous and plasma sampling. DPSvenous may facilitate remote and temperature-independent sampling for AD biomarker measurement. Innovative tools for blood biomarker sampling may help recognizing the earliest changes of AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Amyloid beta-Peptides , Plasma , Amyloidogenic Proteins , Biomarkers , tau Proteins
4.
Clin Chem ; 69(4): 411-421, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36861369

ABSTRACT

BACKGROUND: Plasma glial fibrillary acidic protein (GFAP) has emerged as a promising biomarker in neurological disorders, but further evidence is required in relation to its usefulness for diagnosis and prediction of Alzheimer disease (AD). METHODS: Plasma GFAP was measured in participants with AD, non-AD neurodegenerative disorders, and controls. Its diagnostic and predictive value were analyzed alone or combined with other indicators. RESULTS: A total of 818 participants were recruited (210 followed). Plasma GFAP was significantly higher in AD than in non-AD dementia and non-demented individuals. It increased in a stepwise pattern from preclinical AD, through prodromal AD to AD dementia. It effectively distinguished AD from controls [area under the curve (AUC) > 0.97] and non-AD dementia (AUC > 0.80) and distinguished preclinical (AUC > 0.89) and prodromal AD (AUC > 0.85) from Aß-normal controls. Adjusted or combined with other indicators, higher levels of plasma GFAP displayed predictive value for risk of AD progression (adjusted hazard radio= 4.49, 95%CI, 1.18-16.97, P = 0.027 based on the comparison of those above vs below average at baseline) and cognitive decline (standard-ß=0.34, P = 0.002). Additionally, it strongly correlated with AD-related cerebrospinal fluid (CSF)/neuroimaging markers. CONCLUSIONS: Plasma GFAP effectively distinguished AD dementia from multiple neurodegenerative diseases, gradually increased across the AD continuum, predicted the individual risk of AD progression, and strongly correlated with AD CSF/neuroimaging biomarkers. Plasma GFAP could serve as both a diagnostic and predictive biomarker for AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/cerebrospinal fluid , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Diagnosis, Differential , Biomarkers , Disease Progression , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
5.
Clin Chem Lab Med ; 61(7): 1245-1254, 2023 06 27.
Article in English | MEDLINE | ID: mdl-36709509

ABSTRACT

OBJECTIVES: Neurofilament light chain (NfL) concentration in blood is a biomarker of neuro-axonal injury in the nervous system and there now exist several assays with high enough sensitivity to measure NfL in serum and plasma. There is a need for harmonization with the goal of creating a certified reference material (CRM) for NfL and an early step in such an effort is to determine the best matrix for the CRM. This is done in a commutability study and here the results of the first one for NfL in blood is presented. METHODS: Forty paired individual serum and plasma samples were analyzed for NfL on four different analytical platforms. Neat and differently spiked serum and plasma were evaluated for their suitability as a CRM using the difference in bias approach. RESULTS: The correlation between the different platforms with regards to measured NfL concentrations were very high (Spearman's ρ≥0.96). Samples spiked with cerebrospinal fluid (CSF) showed higher commutability compared to samples spiked with recombinant human NfL protein and serum seems to be a better choice than plasma as the matrix for a CRM. CONCLUSIONS: The results from this first commutability study on NfL in serum/plasma showed that it is feasible to create a CRM for NfL in blood and that spiking should be done using CSF rather than with recombinant human NfL protein.


Subject(s)
Intermediate Filaments , Neurofilament Proteins , Humans , Serum , Plasma , Reference Standards , Biomarkers , Recombinant Proteins
6.
Alzheimers Dement ; 18(10): 1868-1879, 2022 10.
Article in English | MEDLINE | ID: mdl-34936194

ABSTRACT

INTRODUCTION: The current practice of quantifying cerebrospinal fluid (CSF) biomarkers as an aid in the diagnosis of Alzheimer's disease (AD) varies from center to center. For a same biochemical profile, interpretation and reporting of results may differ, which can lead to misunderstandings and raises questions about the commutability of tests. METHODS: We obtained a description of (pre-)analytical protocols and sample reports from 40 centers worldwide. A consensus approach allowed us to propose harmonized comments corresponding to the different CSF biomarker profiles observed in patients. RESULTS: The (pre-)analytical procedures were similar between centers. There was considerable heterogeneity in cutoff definitions and report comments. We therefore identified and selected by consensus the most accurate and informative comments regarding the interpretation of CSF biomarkers in the context of AD diagnosis. DISCUSSION: This is the first time that harmonized reports are proposed across worldwide specialized laboratories involved in the biochemical diagnosis of AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
7.
Clin J Sport Med ; 31(3): 250-256, 2021 May 01.
Article in English | MEDLINE | ID: mdl-30839351

ABSTRACT

OBJECTIVE: To examine changes in blood biomarkers, serum neurofilament light (Nf-L), and plasma tau, as well as the relationship between blood biomarkers and symptom reports, in athletes with a sports-related concussion. DESIGN: Prospective cohort study. SETTING: Private community-based concussion clinic. PARTICIPANTS: Athletes aged 13 to 18 years old with a diagnosed sports-related concussion presenting to a concussion clinic within 7 days of injury and noninjured athletes with no history of concussion aged 13 to 23 years old. ASSESSMENT AND MAIN OUTCOME MEASURES: Injured athletes provided a blood sample at the initial clinical evaluation and again at least 6 months after injury. Noninjured athletes provided a single blood sample. All participants completed symptom reports during each visit. Statistical comparisons of biomarker concentrations and symptom reports were conducted. RESULTS: The mean rank for tau was significantly lower for concussed athletes compared with nonconcussed athletes. In contrast, the mean rank of Nf-L was higher for concussed athletes than for nonconcussed athletes, although the difference was nonsignificant. Plasma tau was significantly lower postinjury compared with 6 months after injury, whereas serum Nf-L was significantly higher postinjury. There was a weak but significant inverse relationship observed between tau and the number of symptoms reported, but no relationship was observed between Nf-L and the number of symptoms reported. CONCLUSIONS: These data indicate that in the days following a sports-related concussion, the blood biomarkers tau and Nf-L display contrasting patterns of change but may not be related to self-reported symptom scores.


Subject(s)
Athletic Injuries , Brain Concussion , Adolescent , Athletes , Athletic Injuries/diagnosis , Biomarkers/blood , Brain Concussion/diagnosis , Humans , Neuropsychological Tests , Prospective Studies , Sports , Young Adult
8.
Mov Disord ; 35(8): 1388-1395, 2020 08.
Article in English | MEDLINE | ID: mdl-32357259

ABSTRACT

OBJECTIVE: Accurate diagnosis is particularly challenging in Parkinson's disease (PD), multiple system atrophy (MSAp), and progressive supranuclear palsy (PSP). We compare the utility of 3 promising biomarkers to differentiate disease state and explain disease severity in parkinsonism: the Automated Imaging Differentiation in Parkinsonism (AID-P), the Magnetic Resonance Parkinsonism Index (MRPI), and plasma-based neurofilament light chain protein (NfL). METHODS: For each biomarker, the area under the curve (AUC) of receiver operating characteristic curves were quantified for PD versus MSAp/PSP and MSAp versus PSP and statistically compared. Unique combinations of variables were also assessed. Furthermore, each measures association with disease severity was determined using stepwise multiple regression. RESULTS: For PD versus MSAp/PSP, AID-P (AUC, 0.900) measures had higher AUC compared with NfL (AUC, 0.747) and MRPI (AUC, 0.669), P < 0.05. For MSAp versus PSP, AID-P (AUC, 0.889), and MRPI (AUC, 0.824) measures were greater than NfL (AUC, 0.537), P < 0.05. We then combined measures to determine if any unique combination provided enhanced accuracy and found that no combination performed better than the AID-P alone in differentiating parkinsonisms. Furthermore, we found that the AID-P demonstrated the highest association with the MDS-UPDRS (Radj2 -AID-P, 26.58%; NfL,15.12%; MRPI, 12.90%). CONCLUSIONS: Compared with MRPI and NfL, AID-P provides the best overall differentiation of PD versus MSAp/PSP. Both AID-P and MRPI are effective in differentiating MSAp versus PSP. Furthermore, combining biomarkers did not improve classification of disease state compared with using AID-P alone. The findings demonstrate in the current sample that the AID-P and MRPI are robust biomarkers for PD, MSAp, and PSP. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Diagnosis, Differential , Humans , Intermediate Filaments , Magnetic Resonance Imaging , Multiple System Atrophy/diagnostic imaging , Parkinsonian Disorders/diagnostic imaging , Supranuclear Palsy, Progressive/diagnostic imaging
9.
Clin Chem Lab Med ; 57(10): 1556-1564, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31251725

ABSTRACT

Background Phosphorylated neurofilament heavy (pNfH), a neuronal cytoskeleton protein, might provide a promising blood biomarker of neuronal damage in neurodegenerative diseases (NDDs). The best analytical approaches to measure pNfH levels and whether serum levels correlate with cerebrospinal fluid (CSF) levels in NDDs remain to be determined. Methods We here compared analytical sensitivity and reliability of three novel analytical approaches (homebrew Simoa, commercial Simoa and ELISA) for quantifying pNfH in both CSF and serum in samples of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and control subjects. Results While all three assays showed highly correlated CSF measurements, Simoa assays also yielded high between-assay correlations for serum measurements (ϱ = 0.95). Serum levels also correlated strongly with CSF levels for Simoa-based measurements (both ϱ = 0.62). All three assays allowed distinguishing ALS from controls by increased CSF pNfH levels, and Simoa assays also by increased serum pNfH levels. pNfH levels were also increased in FTD. Conclusions pNfH concentrations in CSF and, if measured by Simoa assays, in blood might provide a sensitive and reliable biomarker of neuronal damage, with good between-assay correlations. Serum pNfH levels measured by Simoa assays closely reflect CSF levels, rendering serum pNfH an easily accessible blood biomarker of neuronal damage in NDDs.


Subject(s)
Clinical Laboratory Techniques/methods , Neurofilament Proteins/analysis , Reproducibility of Results , Adult , Aged , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Biomarkers/blood , Disease Progression , Female , Frontotemporal Dementia/blood , Frontotemporal Dementia/cerebrospinal fluid , Humans , Huntington Disease/blood , Huntington Disease/cerebrospinal fluid , Intermediate Filaments , Male , Middle Aged , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Phosphorylation , Serum/metabolism
10.
Ann Neurol ; 82(1): 139-146, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28628244

ABSTRACT

As potential treatments for C9ORF72-associated amyotrophic lateral sclerosis (c9ALS) approach clinical trials, the identification of prognostic biomarkers for c9ALS becomes a priority. We show that levels of phosphorylated neurofilament heavy chain (pNFH) in cerebrospinal fluid (CSF) predict disease status and survival in c9ALS patients, and are largely stable over time. Moreover, c9ALS patients exhibit higher pNFH levels, more rapid disease progression, and shorter survival after disease onset than ALS patients without C9ORF72 expansions. These data support the use of CSF pNFH as a prognostic biomarker for clinical trials, which will increase the likelihood of successfully developing a treatment for c9ALS. Ann Neurol 2017;82:139-146.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Neurofilament Proteins/cerebrospinal fluid , Proteins/genetics , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , C9orf72 Protein , Case-Control Studies , Disease Progression , Female , Humans , Male , Middle Aged , Phosphorylation , Survival Analysis , Young Adult
11.
J Neurol Neurosurg Psychiatry ; 89(4): 367-373, 2018 04.
Article in English | MEDLINE | ID: mdl-29054919

ABSTRACT

OBJECTIVE: Phosphorylated neurofilament heavy chain (pNfH) levels are elevated in cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS). Instead of CSF, we explored blood as an alternative source to measure pNfH in patients with ALS. METHODS: In this single centre retrospective study, 85 patients with ALS, 215 disease controls (DC) and 31 ALS mimics were included. Individual serum pNfH concentrations were correlated with concentrations in CSF and with several clinical parameters. The performance characteristics of pNfH in CSF and serum of patients with ALS and controls were calculated and compared using receiver operating characteristic (ROC) curves. RESULTS: CSF and serum pNfH concentrations in patients with ALS correlated well (r=0.652, p<0.0001) and were significantly increased compared with DC (p<0.0001) and ALS mimics (p<0.0001). CSF pNfH outperformed serum pNfH in discriminating patients with ALS from DC and ALS mimics (difference between area under the ROC curves: p=0.0001 and p=0.0005; respectively). Serum pNfH correlated inversely with symptom duration (r=-0.315, p=0.0033). CSF and serum pNfH were lower when the disease progression rate was slower (r=0.279, p<0.01 and r=0.289, p<0.01; respectively). Unlike CSF, serum pNfH did not correlate with the burden of clinical and electromyographic motor neuron dysfunction. CONCLUSIONS: CSF and serum pNfH concentrations are elevated in patients with ALS and correlate with the disease progression rate. Moreover, CSF pNfH correlates with the burden of motor neuron dysfunction. Our findings encourage further pursuit of CSF and serum pNfH concentrations in the diagnostic pathway of patients suspected to have ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Neurofilament Proteins/cerebrospinal fluid , Phosphoproteins/cerebrospinal fluid , Adolescent , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/physiopathology , Case-Control Studies , Child , Electromyography , Female , Humans , Intermediate Filaments/metabolism , Male , Middle Aged , Neurofilament Proteins/metabolism , Young Adult
12.
Nature ; 489(7416): 391-399, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-22996553

ABSTRACT

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography-the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Subject(s)
Anatomy, Artistic , Atlases as Topic , Brain/anatomy & histology , Brain/metabolism , Gene Expression Profiling , Transcriptome/genetics , Adult , Animals , Brain/cytology , Calbindins , Databases, Genetic , Dopamine/metabolism , Health , Hippocampus/cytology , Hippocampus/metabolism , Humans , In Situ Hybridization , Internet , Macaca mulatta/anatomy & histology , Macaca mulatta/genetics , Male , Mice , Neocortex/anatomy & histology , Neocortex/cytology , Neocortex/metabolism , Oligonucleotide Array Sequence Analysis , Post-Synaptic Density/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , S100 Calcium Binding Protein G/genetics , Species Specificity
13.
Alzheimers Dement ; 13(1): 45-58, 2017 01.
Article in English | MEDLINE | ID: mdl-27870940

ABSTRACT

The last decade has seen a substantial increase in research focused on the identification of blood-based biomarkers that have utility in Alzheimer's disease (AD). Blood-based biomarkers have significant advantages of being time- and cost-efficient as well as reduced invasiveness and increased patient acceptance. Despite these advantages and increased research efforts, the field has been hampered by lack of reproducibility and an unclear path for moving basic discovery toward clinical utilization. Here we reviewed the recent literature on blood-based biomarkers in AD to provide a current state of the art. In addition, a collaborative model is proposed that leverages academic and industry strengths to facilitate the field in moving past discovery only work and toward clinical use. Key resources are provided. This new public-private partnership model is intended to circumvent the traditional handoff model and provide a clear and useful paradigm for the advancement of biomarker science in AD and other neurodegenerative diseases.


Subject(s)
Alzheimer Disease/blood , Biomarkers/blood , Cooperative Behavior , Public-Private Sector Partnerships , Female , Humans , Male , Reproducibility of Results
14.
Hum Brain Mapp ; 37(2): 833-45, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26663463

ABSTRACT

There is great interest in developing physiological-based biomarkers such as diffusion tensor imaging to aid in the management of concussion, which is currently entirely dependent on clinical judgment. However, the time course for recovery of white matter abnormalities following sports-related concussion (SRC) is unknown. We collected diffusion tensor imaging and behavioral data in forty concussed collegiate athletes on average 1.64 days (T1; n = 33), 8.33 days (T2; n = 30), and 32.15 days post-concussion (T3; n = 26), with healthy collegiate contact-sport athletes (HA) serving as controls (n = 46). We hypothesized that fractional anisotropy (FA) would be increased acutely and partially recovered by one month post-concussion. Mood symptoms were assessed using structured interviews. FA differences were assessed using both traditional and subject-specific analyses. An exploratory analysis of tau plasma levels was conducted in a subset of participants. Results indicated that mood symptoms improved over time post-concussion, but remained elevated at T3 relative to HA. Across both group and subject-specific analyses, concussed athletes exhibited increased FA in several white matter tracts at each visit post-concussion with no longitudinal evidence of recovery. Increased FA at T1 and T3 was significantly associated with an independent, real-world outcome measure for return-to-play. Finally, we observed a nonsignificant trend for reduced tau in plasma of concussed athletes at T1 relative to HA, with tau significantly increasing by T2. These results suggest white matter abnormalities following SRC may persist beyond one month and have potential as an objective biomarker for concussion outcome. Hum Brain Mapp 37:833-845, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Athletic Injuries/pathology , Brain Concussion/pathology , Brain/pathology , Affect , Athletes , Athletic Injuries/psychology , Brain Concussion/etiology , Brain Concussion/psychology , Cross-Sectional Studies , Diffusion Tensor Imaging/methods , Female , Humans , Interview, Psychological , Longitudinal Studies , Male , Neural Pathways/pathology , White Matter/pathology , Young Adult
15.
Muscle Nerve ; 53(2): 169-82, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26574709

ABSTRACT

Biomarkers have become the focus of intense research in the field of amyotrophic lateral sclerosis (ALS), with the hope that they might aid therapy development efforts. Notwithstanding the discovery of many candidate biomarkers, none have yet emerged as validated tools for drug development. In this review we present a nuanced view of biomarkers based on the perspective of the Food and Drug Administration; highlight the distinction between discovery and validation; describe existing and emerging resources; review leading biological fluid-based, electrophysiological, and neuroimaging candidates relevant to therapy development efforts; discuss lessons learned from biomarker initiatives in related neurodegenerative diseases; and outline specific steps that we, as a field, might take to hasten the development and validation of biomarkers that will prove useful in enhancing efforts to develop effective treatments for ALS patients. Most important among these is the proposal to establish a federated ALS Biomarker Consortium in which all interested and willing stakeholders may participate with equal opportunity to contribute to the broader mission of biomarker development and validation.


Subject(s)
Amyotrophic Lateral Sclerosis , Biomarkers , Drug Discovery , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/therapy , Biomarkers/metabolism , Drug Discovery/methods , Drug Discovery/standards , Drug Discovery/trends , Humans , United States
16.
Clin Chem Lab Med ; 54(7): 1177-91, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-26495928

ABSTRACT

BACKGROUND: The cerebrospinal fluid (CSF) amyloid-ß (Aß42) peptide is an important biomarker for Alzheimer's disease (AD). Variability in measured Aß42 concentrations at different laboratories may be overcome by standardization and establishing traceability to a reference system. Candidate certified reference materials (CRMs) are validated herein for this purpose. METHODS: Commutability of 16 candidate CRM formats was assessed across five CSF Aß42 immunoassays and one mass spectrometry (MS) method in a set of 48 individual clinical CSF samples. Promising candidate CRM formats (neat CSF and CSF spiked with Aß42) were identified and subjected to validation across eight (Elecsys, EUROIMMUN, IBL, INNO-BIA AlzBio3, INNOTEST, MSD, Simoa, and Saladax) immunoassays and the MS method in 32 individual CSF samples. Commutability was evaluated by Passing-Bablok regression and the candidate CRM termed commutable when found within the prediction interval (PI). The relative distance to the regression line was assessed. RESULTS: The neat CSF candidate CRM format was commutable for almost all method comparisons, except for the Simoa/MSD, Simoa/MS and MS/IBL where it was found just outside the 95% PI. However, the neat CSF was found within 5% relative distance to the regression line for MS/IBL, between 5% and 10% for Simoa/MS and between 10% and 15% for Simoa/MSD comparisons. CONCLUSIONS: The neat CSF candidate CRM format was commutable for 33 of 36 method comparisons, only one comparison more than expected given the 95% PI acceptance limit. We conclude that the neat CSF candidate CRM can be used for value assignment of the kit calibrators for the different Aß42 methods.


Subject(s)
Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Immunoassay/standards , Humans , Limit of Detection , Reference Standards , Tandem Mass Spectrometry
17.
Neurobiol Dis ; 80: 29-41, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25982836

ABSTRACT

Despite growing research efforts, no reliable biomarker currently exists for the diagnosis and prognosis of multiple system atrophy (MSA). Such biomarkers are urgently needed to improve diagnostic accuracy, prognostic guidance and also to serve as efficacy measures or surrogates of target engagement for future clinical trials. We here review candidate fluid biomarkers for MSA and provide considerations for further developments and harmonization of standard operating procedures. A PubMed search was performed until April 24, 2015 to review the literature with regard to candidate blood and cerebrospinal fluid (CSF) biomarkers for MSA. Abstracts of 1760 studies were retrieved and screened for eligibility. The final list included 60 studies assessing fluid biomarkers in patients with MSA. Most studies have focused on alpha-synuclein, markers of axonal degeneration or catecholamines. Their results suggest that combining several CSF fluid biomarkers may be more successful than using single markers, at least for the diagnosis. Currently, the clinically most useful markers may comprise a combination of the light chain of neurofilament (which is consistently elevated in MSA compared to controls and Parkinson's disease), metabolites of the catecholamine pathway and proteins such as α-synuclein, DJ-1 and total-tau. Beyond future efforts in biomarker discovery, the harmonization of standard operating procedures will be crucial for future success.


Subject(s)
Biomarkers/blood , Biomarkers/cerebrospinal fluid , Multiple System Atrophy/diagnosis , Animals , Brain/metabolism , Catecholamines/analysis , Humans , Intermediate Filaments/metabolism , Multiple System Atrophy/blood , Multiple System Atrophy/cerebrospinal fluid , Nerve Degeneration/metabolism , alpha-Synuclein/analysis
18.
Alzheimers Dement ; 11(5): 549-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25282381

ABSTRACT

The lack of readily available biomarkers is a significant hindrance toward progressing to effective therapeutic and preventative strategies for Alzheimer's disease (AD). Blood-based biomarkers have potential to overcome access and cost barriers and greatly facilitate advanced neuroimaging and cerebrospinal fluid biomarker approaches. Despite the fact that preanalytical processing is the largest source of variability in laboratory testing, there are no currently available standardized preanalytical guidelines. The current international working group provides the initial starting point for such guidelines for standardized operating procedures (SOPs). It is anticipated that these guidelines will be updated as additional research findings become available. The statement provides (1) a synopsis of selected preanalytical methods utilized in many international AD cohort studies, (2) initial draft guidelines/SOPs for preanalytical methods, and (3) a list of required methodological information and protocols to be made available for publications in the field to foster cross-validation across cohorts and laboratories.


Subject(s)
Alzheimer Disease/blood , Biomarkers/blood , Guidelines as Topic/standards , Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Humans
19.
Med Res Rev ; 34(3): 503-31, 2014 May.
Article in English | MEDLINE | ID: mdl-23813922

ABSTRACT

During the past decade there has been an increasing recognition of the incidence of mild traumatic brain injury (mTBI) and a better understanding of the subtle neurological and cognitive deficits that may result from it. A substantial, albeit suboptimal, effort has been made to define diagnostic criteria for mTBI and improve diagnostic accuracy. Thus, biomarkers that can accurately and objectively detect brain injury after mTBI and, ideally, aid in clinical management are needed. In this review, we discuss the current research on serum biomarkers for mTBI including their rationale and diagnostic performances. Sensitive and specific biomarkers reflecting brain injury can provide important information regarding TBI pathophysiology and serve as candidate markers for predicting abnormal computed tomography findings and/or the development of residual deficits in patients who sustain an mTBI. We also outline the roles of biomarkers in settings of specific interest including pediatric TBI, sports concussions and military injuries, and provide perspectives on the validation of such markers for use in the clinic. Finally, emerging proteomics-based strategies for identifying novel markers will be discussed.


Subject(s)
Biomarkers/metabolism , Brain Injuries/diagnosis , Brain Injuries/metabolism , Athletic Injuries/blood , Athletic Injuries/diagnosis , Biomarkers/blood , Brain Concussion/blood , Brain Concussion/diagnosis , Brain Injuries/blood , Decision Making , Humans
SELECTION OF CITATIONS
SEARCH DETAIL