Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Cell Physiol ; 234(8): 14109-14122, 2019 08.
Article in English | MEDLINE | ID: mdl-30623435

ABSTRACT

Nephrolithiasis is a common disease of the urinary system, of which idiopathic calcium oxalate (CaOx) kidney stones, in particular, are one of the special types. In the initial stages of CaOx kidney stone formation, Randall's plaques (RPs) develop. Liver X receptors (LXRs) inhibit oxidative stress and inflammatory in other diseases; nevertheless, the role of LXRs in nephrolithiasis has yet to be elucidated. In this study, the role of LXRs in the progression of RP formation was investigated. Microarray analysis revealed that LXR/RXR levels were significantly greater in low-plaque tissues (<5%) than in high-plaque tissues (>5%), confirming the link between LXR activation and RP formation. Correspondingly, expression levels of two LXR target genes, LXRα and LXRß, were lower in high-plaque tissues than in low-plaque tissues. In vitro, LXR agonist alleviated calcium oxalate monohydrate-induced cellular calcium deposits and apoptosis. LXR activation decreased reactive oxygen species production and gene expression of inflammatory mediators, including osteopontin that has recently been demonstrated to correlate with the development of RPs. Moreover, p38 MAPK and JNK signaling may mediate LXR-regulated expression in HK-2 cells. In an animal model, the deposition was reduced by activating LXR, and osteopontin expression was also inhibited. Our findings suggest a role for LXRs in the progression of idiopathic CaOx kidney stones; LXR agonists may have therapeutic potential for the treatment of nephrolithiasis.


Subject(s)
Kidney Calculi/genetics , Kidney/metabolism , Liver X Receptors/genetics , Nephrolithiasis/genetics , Osteopontin/genetics , Animals , Apoptosis/genetics , Calcium Oxalate/metabolism , Disease Models, Animal , Female , Gene Expression Regulation/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Kidney/pathology , Kidney Calculi/drug therapy , Kidney Calculi/pathology , Liver X Receptors/agonists , Male , Mice , Microarray Analysis , Middle Aged , Nephrolithiasis/drug therapy , Nephrolithiasis/pathology , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/genetics
2.
Huan Jing Ke Xue ; 43(8): 4333-4341, 2022 Aug 08.
Article in Zh | MEDLINE | ID: mdl-35971729

ABSTRACT

Heavy metal contamination affects microbial composition and diversity. The interaction between heavy metal contamination and soil microorganisms has been a hot topic in ecological research. Battery manufacturing has been going on for over six decades in Xinxiang City, resulting in severe soil heavy metal contamination due to battery wastewater runoff. Few studies have investigated the effect of heavy metal contamination due to long-term battery wastewater runoff on microbial diversity and metabolomics in Xinxiang City. In this study, we collected samples from three heavy metal contaminated sites in Xinxiang City and found that Cd and Pb exceeded the recommended thresholds by 34-66 fold and 1.5-2.32 fold, respectively. High-throughput sequencing showed that Bacillus, Arthrobacter, Sphingomonas, and Streptomyces were the dominant bacteria genera, while Olpidium, Plectosphaerella, and Gibellulopsis were the dominant fungi genera, indicating that heavy metal contaminated soil in Xinxiang City was rich in heavy metal tolerant bacteria and fungi due to the long-term heavy metal stress. Correlation analysis showed that total Cu, DTPA extract Cu, and water soluble Pb were significant factors in bacterial diversity, while total Cd, total Ni, total Pb, total Zn, DTPA extract Cu, and water soluble Pb were significant factors in fungal diversity. To better understand the effect of heavy metal contamination on the metabolism of soil microorganisms, we conducted non-targeted metabolomic profiling, which showed significant differences in metabolites across the samples. Pathway enrichment analysis showed that these differential metabolites were involved in pathways such as metabolism, environmental information processing, and genetic Information Processing, which may play a role in heavy metal stress mitigation and environmental adaptation.


Subject(s)
Metals, Heavy , Microbiota , Soil Pollutants , Bacteria , Cadmium/analysis , China , Environmental Monitoring , Farms , High-Throughput Nucleotide Sequencing , Lead/analysis , Metals, Heavy/analysis , Pentetic Acid/pharmacology , Plant Extracts/analysis , Plant Extracts/pharmacology , Soil , Soil Pollutants/analysis , Wastewater/analysis , Water/analysis
3.
Article in English | MEDLINE | ID: mdl-36498382

ABSTRACT

To explore the mechanism by which the plant growth-promoting bacterium Brevibacillus sp. SR-9 improves sweet sorghum tolerance and enriches soil cadmium (Cd) under pot conditions, the effect of strain SR-9 inoculation on the microbial community of sorghum rhizosphere soil was analyzed by metagenomics. Gene expression in sweet sorghum roots was analyzed using transcriptomics. The results showed that strain SR-9 promoted the growth of sweet sorghum and improved the absorption and enrichment of Cd in the plants. Compared with the uninoculated treatment, the aboveground part and root dry weight in strain SR-9 inoculated with sorghum increased by 21.09% and 17.37%, respectively, and the accumulation of Cd increased by 135% and 53.41%, respectively. High-throughput sequencing showed that strain SR-9 inoculation altered the rhizosphere bacterial community, significantly increasing the relative abundance of Actinobacteria and Firmicutes. Metagenomic analysis showed that after inoculation with strain SR-9, the abundance of genes involved in amino acid transport metabolism, energy generation and conversion, and carbohydrate transport metabolism increased. KEGG functional classification showed that inoculation with strain SR-9 increased the abundance of genes involved in soil microbial metabolic pathways in the rhizosphere soil of sweet sorghum and the activity of soil bacteria. Transcriptome analysis identified 198 upregulated differentially expressed genes in sweet sorghum inoculated with strain SR-9, including those involved in genetic information processing, biological system, metabolism, environmental information processing, cellular process, and human disease. Most of the annotated differentially expressed genes were enriched in the metabolic category and were related to pathways such as signal transduction, carbohydrate metabolism, amino acid metabolism, and biosynthesis of other secondary metabolites. This study showed that plant growth-promoting bacteria can alter the rhizosphere bacterial community composition, increasing the activity of soil bacteria and upregulating gene expression in sweet sorghum roots. The findings enhance our understanding of the microbiological and botanical mechanisms by which plant growth-promoting bacterial inoculation improves the remediation of heavy metals by sorghum.


Subject(s)
Brevibacillus , Soil Pollutants , Sorghum , Humans , Cadmium/analysis , Sorghum/metabolism , Sorghum/microbiology , Soil Pollutants/analysis , Brevibacillus/genetics , Brevibacillus/metabolism , Soil/chemistry , Soil Microbiology , Gene Expression Profiling , Amino Acids/metabolism , Plant Roots/metabolism , Biodegradation, Environmental
4.
Front Microbiol ; 13: 884765, 2022.
Article in English | MEDLINE | ID: mdl-35783417

ABSTRACT

As the water source for the Middle Route Project of the South-to-North Water Diversion Project (MR-SNWD) of China, the Danjiangkou Reservoir (DJR) is in the process of ecosystem reassembly, but the composition, function, and assembly mechanisms of bacterioplankton communities are not yet clear. In this study, the composition, distribution characteristics and influencing factors of bacterioplankton communities were analyzed by high-throughput sequencing (HTS); PICRUSt2 was used to predict community function; a molecular ecological network was used to analyze bacterioplankton interactions; and the assembly process of bacterioplankton communities was estimated with a neutral model. The results indicated that the communities, function and interaction of bacterioplankton in the DJR had significant annual and seasonal variations and that the seasonal differences were greater than that the annual differences. Excessive nitrogen (N) and phosphorus (P) nutrients in the DJR are the most important factors affecting water quality in the reservoir, N and P nutrients are the main factors affecting bacterial communities. Season is the most important factor affecting bacterioplankton N and P cycle functions. Ecological network analysis indicated that the average clustering coefficient and average connectivity of the spring samples were lower than those of the autumn samples, while the number of modules for the spring samples was higher than that for the autumn samples. The neutral model explained 66.3%, 63.0%, 63.0%, and 70.9% of the bacterioplankton community variations in samples in the spring of 2018, the autumn of 2018, the spring of 2019, and the autumn of 2019, respectively. Stochastic processes dominate bacterioplankton community assembly in the DJR. This study revealed the composition, function, interaction, and assembly of bacterioplankton communities in the DJR, providing a reference for the protection of water quality and the ecological functions of DJR bacterioplankton.

5.
PLoS One ; 10(4): e0123248, 2015.
Article in English | MEDLINE | ID: mdl-25874631

ABSTRACT

The members of the genus Picea form a dominant component in many alpine and boreal forests which are the major sink for atmospheric CO2. However, little is known about the growth response and acclimation of CO2 exchange characteristics to high temperature stress in Picea taxa from different altitudes. Gas exchange parameters and growth characteristics were recorded from four year old seedlings of two alpine (Picea likiangensis vars. rubescens and linzhiensis) and two lowland (P. koraiensis and P. meyeri) taxa. Seedlings were grown at moderate (25°C/15°C) and high (35°C/25°C) day/night temperatures, for four months. The approximated biomass increment (ΔD2H) for all taxa decreased under high temperature stress, associated with decreased photosynthesis and increased respiration. However, the two alpine taxa exhibited lower photosynthetic acclimation and higher respiratory acclimation than either lowland taxon. Moreover, higher leaf dry mass per unit area (LMA) and leaf nitrogen content per unit area (Narea), and a smaller change in the nitrogen use efficiency of photosynthesis (PNUE) for lowland taxa indicated that these maintained higher homeostasis of photosynthesis than alpine taxa. The higher respiration rates produced more energy for repair and maintenance biomass, especially for higher photosynthetic activity for lowland taxa, which causes lower respiratory acclimation. Thus, the changes of ΔD2H for alpine spruces were larger than that for lowland spruces. These results indicate that long term heat stress negatively impact on the growth of Picea seedlings, and alpine taxa are more affected than low altitude ones by high temperature stress. Hence the altitude ranges of Picea taxa should be taken into account when predicting changes to carbon fluxes in warmer conditions.


Subject(s)
Photosynthesis/physiology , Picea/physiology , Altitude , Carbon/chemistry , Carbon Dioxide/chemistry , Nitrogen/chemistry , Picea/classification , Plant Leaves/metabolism , Seeds/metabolism , Temperature
6.
AoB Plants ; 62014 Nov 10.
Article in English | MEDLINE | ID: mdl-25387750

ABSTRACT

To predict the ecological consequences of climate change for a widely distributed tree species, it is essential to develop a deep understanding of the ecophysiological responses of populations from contrasting climates to varied soil water availabilities. In the present study, we focused on Pinus tabuliformis, one of the most economically and ecologically important tree species in China. In a greenhouse experiment, we exposed trees from high-elevation (HP) and low-elevation (LP) populations to low (80 % of field capacity, FC), mild (60 % FC), moderate (40 % FC) and severe (20 % FC) water stresses. Leaf gas exchange, biomass production and allocation, as well as water-use efficiency, were measured during the experiment. Increasing soil water stress clearly decreased the relative growth rate (RGR), total dry mass (TDM), light-saturated photosynthetic rate (Asat), stomatal conductance (gs), total water use (TWU) and whole-plant water-use efficiency (WUEWP). In contrast, intrinsic water-use efficiency (WUEi) and carbon isotope composition (δ(13)C) both increased significantly with increasing soil water stress for both populations. Only in the LP did the root/shoot ratio (R/S ratio) significantly increase when the water stress increased. A strong positive correlation between Asat and gs coupled with a reduced intercellular CO2 concentration (Ci) probably suggested that stomatal limitations were the main cause of the decreased Asat. However, all the measured variables from the HP were affected less by drought compared with those of the LP, and most aspects of the HP were canalized against drought stress, which was reflected by the relatively higher RGR, TDM and WUEWP. Overall, the results suggest that the two populations responded differentially to drought stress with the HP showing higher drought tolerance than the LP, which was reflected by its faster seedling growth rate and more efficient water use under drought conditions.

7.
PLoS One ; 3(3): e1799, 2008 Mar 19.
Article in English | MEDLINE | ID: mdl-18350139

ABSTRACT

The energetic equivalence rule, which is based on a combination of metabolic theory and the self-thinning rule, is one of the fundamental laws of nature. However, there is a progressively increasing body of evidence that scaling relationships of metabolic rate vs. body mass and population density vs. body mass are variable and deviate from their respective theoretical values of 3/4 and -3/4 or -2/3. These findings questioned the previous hypotheses of energetic equivalence rule in plants. Here we examined the allometric relationships between photosynthetic mass (M(p)) or leaf mass (M(L)) vs. body mass (beta); population density vs. body mass (delta); and leaf mass vs. population density, for desert shrubs, trees, and herbaceous plants, respectively. As expected, the allometric relationships for both photosynthetic mass (i.e. metabolic rate) and population density varied with the environmental conditions. However, the ratio between the two exponents was -1 (i.e. beta/delta = -1) and followed the trade-off principle when local resources were limited. Our results demonstrate for the first time that the energetic equivalence rule of plants is based on trade-offs between the variable metabolic rate and population density rather than their constant allometric exponents.


Subject(s)
Energy Metabolism , Plants/metabolism , Photosynthesis , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL