Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Publication year range
1.
Med Res Rev ; 44(2): 833-866, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38014919

ABSTRACT

Lysine-specific demethylase 1 (LSD1) is a flavin adenine dinucleotide (FAD) dependent monoamine oxidase (MAO) that erases the mono-, and dimethylation of histone 3 lysine 4 (H3K4), resulting in the suppression of target gene transcriptions. Besides, it can also demethylate some nonhistone substrates to regulate their biological functions. As reported, LSD1 is widely upregulated and plays a key role in several kinds of cancers, pharmacological or genetic ablation of LSD1 in cancer cells suppresses cell aggressiveness by several distinct mechanisms. Therefore, numerous LSD1 inhibitors, including covalent and noncovalent, have been developed and several of them have entered clinical trials. Herein, we systemically reviewed and discussed the biological function of LSD1 in tumors, lymphocytes as well as LSD1-targeting inhibitors in clinical trials, hoping to benefit the field of LSD1 and its inhibitors.


Subject(s)
Lysine , Neoplasms , Humans , Lysine/therapeutic use , Histone Demethylases/metabolism , Histone Demethylases/therapeutic use , Monoamine Oxidase Inhibitors/therapeutic use , Histones , Neoplasms/drug therapy , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
2.
J Med Chem ; 67(2): 922-951, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38214982

ABSTRACT

Lysine specific demethylase 1 (LSD1), a transcriptional modulator that represses or activates target gene expression, is overexpressed in many cancer and causes imbalance in the expression of normal gene networks. Over two decades, numerous LSD1 inhibitors have been reported, especially some of which have entered clinical trials, including eight irreversible inhibitors (TCP, ORY-1001, GSK-2879552, INCB059872, IMG-7289, ORY-2001, TAK-418, and LH-1802) and two reversible inhibitors (CC-90011 and SP-2577). Most clinical LSD1 inhibitors demonstrated enhanced efficacy in combination with other agents. LSD1 multitarget inhibitors have also been reported, exampled by clinical dual LSD1/histone deacetylases (HDACs) inhibitors 4SC-202 and JBI-802. Herein, we present a comprehensive overview of the combination of LSD1 inhibitors with various antitumor agents, as well as LSD1 multitarget inhibitors. Additionally, the challenges and future research directionsare also discussed, and we hope this review will provide new insight into the development of LSD1-targeted anticancer agents.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Demethylases/metabolism
3.
J Med Chem ; 67(18): 16165-16184, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39264726

ABSTRACT

LSD1 (histone lysine-specific demethylase 1) has been gradually disclosed to act as an immunomodulator to enhance antitumor immune response. Despite the identification of numerous potent LSD1 inhibitors, there remains a lack of LSD1 inhibitors approved for marketing. Novel LSD1 inhibitors with different mechanisms are therefore needed. Herein, we reported a series of novel quinazoline-based LSD1 inhibitors. Among them, compound Z-1 exhibited the best LSD1 inhibitory activity (IC50 = 0.108 µM). Z-1 also acted as a selective and cellular active as an LSD1 inhibitor. Furthermore, Z-1 promoted response of gastric cancer cells to T-cell killing effect by decreasing PD-L1 expression and further attenuated the PD-1/PD-L1 interaction. In vivo, Z-1 exhibited significant suppression effect on the growth of gastric cancer cells without obvious toxicity. Therefore, Z-1 represents a potential novel immunomodulator that targets LSD1, providing a lead compound with new function mechanism for gastric cancer treatment.


Subject(s)
Histone Demethylases , Stomach Neoplasms , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Animals , Cell Line, Tumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Mice , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Drug Discovery , Molecular Docking Simulation
4.
Theranostics ; 14(4): 1464-1499, 2024.
Article in English | MEDLINE | ID: mdl-38389844

ABSTRACT

Epigenetics refers to the reversible process through which changes in gene expression occur without changing the nucleotide sequence of DNA. The process is currently gaining prominence as a pivotal objective in the treatment of cancers and other ailments. Numerous drugs that target epigenetic mechanisms have obtained approval from the Food and Drug Administration (FDA) for the therapeutic intervention of diverse diseases; many have drawbacks, such as limited applicability, toxicity, and resistance. Since the discovery of the first proteolysis-targeting chimeras (PROTACs) in 2001, studies on targeted protein degradation (TPD)-encompassing PROTACs, molecular glue (MG), hydrophobic tagging (HyT), degradation TAG (dTAG), Trim-Away, a specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein eraser (SNIPER), antibody-PROTACs (Ab-PROTACs), and other lysosome-based strategies-have achieved remarkable progress. In this review, we comprehensively highlight the small-molecule degraders beyond PROTACs that could achieve the degradation of epigenetic proteins (including bromodomain-containing protein-related targets, histone acetylation/deacetylation-related targets, histone methylation/demethylation related targets, and other epigenetic targets) via proteasomal or lysosomal pathways. The present difficulties and forthcoming prospects in this domain are also deliberated upon, which may be valuable for medicinal chemists when developing more potent, selective, and drug-like epigenetic drugs for clinical applications.


Subject(s)
Histones , Neoplasms, Squamous Cell , United States , Humans , Protein Processing, Post-Translational , Proteolysis , Epigenesis, Genetic , Lysosomes
5.
Eur J Med Chem ; 249: 115101, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36724635

ABSTRACT

In recent decades, the development of targeted drugs has featured prominently in the treatment of cancer, which is among the major causes of mortality globally. Triazole-fused pyrimidines, a widely-used class of heterocycles in medicinal chemistry, have attracted considerable interest as potential anticancer agents that target various cancer-associated targets in recent years, demonstrating them as valuable templates for discovering novel anticancer candidates. The current review concentrates on the latest advancements of triazole-pyrimidines as target-based anticancer agents, including works published between 2007 and the present (2007-2022). The structure-activity relationships (SARs) and multiple pathways are also reviewed to shed light on the development of more effective and biotargeted anticancer candidates.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Triazoles/pharmacology , Triazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Structure-Activity Relationship
6.
Eur J Med Chem ; 259: 115684, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37542989

ABSTRACT

Recently, histone lysine specific demethylase 1 (LSD1) has become an emerging and promising target for cancer immunotherapy. Herein, based on our previously reported LSD1 inhibitor DXJ-1 (also called 6x), a series of novel acridine-based LSD1 inhibitors were identified via structure optimizations. Among them, compound 5ac demonstrated significantly enhanced inhibitory activity against LSD1 with an IC50 value of 13 nM, about 4.6-fold more potent than DXJ-1 (IC50 = 73 nM). Molecular docking studies revealed that compound 5ac could dock well into the active site of LSD1. Further mechanism studies showed that compound 5ac inhibited the stemness and migration of gastric cancer cells, and reduced the expression of PD-L1 in BGC-823 and MFC cells. More importantly, BGC-823 cells were more sensitive to T cell killing when treated with compound 5ac. Besides, the tumor growth was also suppressed by compound 5ac in mice. Together, 5ac could serve as a promising candidate to enhance immune response in gastric cancer.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Animals , Mice , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Stomach Neoplasms/drug therapy , Molecular Docking Simulation , Acridines/pharmacology , Cell Line, Tumor , Immunity , Histone Demethylases , Enzyme Inhibitors/pharmacology , Cell Proliferation
7.
Eur J Med Chem ; 251: 115255, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36913900

ABSTRACT

LSD1 is overexpressed in various cancers and promotes tumor cell proliferation, tumor expansion, and suppresses immune cells infiltration and is closely associated with immune checkpoint inhibitors therapy. Therefore, the inhibition of LSD1 has been recognized as a promising strategy for cancer therapy. In this study, we screened an in-house small-molecule library targeting LSD1, an FDA-approved drug amsacrine for acute leukemia and malignant lymphomas was found to exhibit moderate anti-LSD1 inhibitory activity (IC50 = 0.88 µM). Through further medicinal chemistry efforts, the most active compound 6x increased anti-LSD1 activity significantly (IC50 = 0.073 µM). Further mechanistic studies demonstrated that compound 6x inhibited the stemness and migration of gastric cancer cell, and decreased the expression of PD-L1 (programmed cell death-ligand 1) in BGC-823 and MFC cells. More importantly, BGC-823 cells are more susceptible to T-cell killing when treated with compound 6x. Moreover, tumor growth was also suppressed by compound 6x in mice. Altogether, our findings demonstrated that acridine-based novel LSD1 inhibitor 6x may be a lead compound for the development of activating T cell immune response in gastric cancer cells.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Animals , Mice , Antineoplastic Agents/chemistry , Enzyme Inhibitors/pharmacology , Stomach Neoplasms/drug therapy , Acridines/pharmacology , Acridines/therapeutic use , Cell Line, Tumor , Histone Demethylases , Cell Proliferation
8.
J Med Chem ; 66(6): 3896-3916, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36856685

ABSTRACT

Histone lysine specific demethylase 1 (LSD1) has been recognized as an important epigenetic target for cancer treatment. Although several LSD1 inhibitors have entered clinical trials, the discovery of novel potent LSD1 inhibitors remains a challenge. In this study, the antipsychotic drug chlorpromazine was characterized as an LSD1 inhibitor (IC50 = 5.135 µM), and a series of chlorpromazine derivatives were synthesized. Among them, compound 3s (IC50 = 0.247 µM) was the most potent one. More importantly, compound 3s inhibited LSD1 in the cellular level and downregulated the expression of programmed cell death-ligand 1 (PD-L1) in BGC-823 and MFC cells to enhance T-cell killing response. An in vivo study confirmed that compound 3s can inhibit MFC cell proliferation without significant toxicity in immunocompetent mice. Taken together, our findings indicated that the novel LSD1 inhibitor 3s tethering a phenothiazine scaffold may serve as a lead compound for further development to activate T-cell immunity in gastric cancer.


Subject(s)
Enzyme Inhibitors , Stomach Neoplasms , Animals , Mice , Enzyme Inhibitors/pharmacology , Stomach Neoplasms/drug therapy , Cell Line, Tumor , Chlorpromazine/therapeutic use , T-Lymphocytes/metabolism , Cell Proliferation , Histone Demethylases/metabolism , Cell Death , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL