Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Res ; 262(Pt 1): 119786, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142452

ABSTRACT

The artificial light at night (ALAN) exposure has emerged as a significant environmental and public health concern globally. However, there is far less evidence on the health effects of indoor ALAN than on outdoor ALAN. Moreover, evidence on cardiovascular effects of indoor ALAN is more limited. To evaluate the association between short-term exposure to ALAN during sleep with heart rate variability (HRV) in young healthy adults, as well as the mediating role of blood oxygen saturation (SpO2), and to further explore the intervention effects of shading habits, this prospective repeated measurement study was conducted among 81 adults with 150 nights (1324h) of HRV monitoring. HRV and SpO2 were monitored during sleep, concurrently with the measurement of indoor and outdoor ALAN. Shading habits were defined as whether to wear blindfolds or draw bed curtains during sleep, and were collected by questionnaires. Linear mixed-effect model was conducted to assess the association between ALAN exposure and HRV indices. The role of SpO2 in the association was analyzed using mediation analyses. We found that indoor ALAN exposure reduced parasympathetic activity and imbalanced cardiac autonomic function. We also found that the use of outdoor ALAN may underestimate or misestimate the potential health effects of ALAN. A significant mediation effects were observed on standard deviation of normal-to-normal intervals (SDNN; p-value for ACME = 0.014) and the ratio of low frequency power to high frequency power (LF/HF; p-value for ACME = 0.026) through minimum SpO2 after indoor ALAN exposure. The association between indoor ALAN and HRV was more pronounced among participants without shading habits during sleep. This study provides general population-based evidence that short-term exposure to indoor ALAN was significantly associated with impaired HRV, and SpO2 partially mediated the association. Improve shading habits during sleep may mitigate the adverse effects of indoor ALAN.

2.
BMC Public Health ; 23(1): 1956, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37814263

ABSTRACT

BACKGROUND: Lower extremity deep vein thrombosis (LEDVT) after surgical operations is a common and fatal disease leading to unfavorable outcomes including death. Nevertheless, there has been insufficient evidence on the associations between ambient air pollution and LEDVT, particularly studies from developing regions. METHODS: Based on 302 LEDVT cases and 302 controls in a general hospital in Beijing, China, this unmatched retrospective case-control study investigated the associations of fine particulate matter (PM2.5), inhalable particulate matter (PM10), and ozone (O3) with odds of LEDVT. RESULTS: Per 10 µg/m3 increase in PM2.5, PM10, and O3 at 3-month, 6-month, and 2-year average was associated with increased LEDVT odds [odds ratios (ORs) for PM2.5: 1.10 (95%CI: 1.05, 1.14), 1.14 (95%CI: 1.09, 1.18), and 1.30 (95%CI: 1.06, 1.61); ORs for PM10: 1.06 (95%CI: 1.02, 1.10), 1.12 (95%CI: 1.08, 1.16), and 1.29 (95%CI: 1.03, 1.61); ORs for O3: 1.00 (95%CI: 0.96, 1.04), 1.16 (95%CI: 1.02, 1.31), and 2.08 (95%CI: 1.03, 4.18), respectively]. The stratified analyses, exposure-responses curves, and sensitivity analyses further highlighted the robustness of our findings. CONCLUSIONS: Long-term exposures to ambient PM2.5, PM10, and O3 may increase the risk of LEDVT in patients after surgical operations. The results may be implicated in the prevention and control of adverse clinical outcomes of surgical patients associated with ambient air pollution.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Ozone/adverse effects , Ozone/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Retrospective Studies , Case-Control Studies , Beijing , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , China/epidemiology , Nitrogen Dioxide/analysis , Lower Extremity/surgery
3.
Sci Total Environ ; 924: 171561, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38458472

ABSTRACT

Ambient ozone (O3) is recognized as a significant air pollutant with implications for cardiorespiratory health, yet the effects of indoor O3 exposure have received less consideration. Furthermore, while sleep occupies one-third of life, research on the health consequences of O3 exposure during this crucial period is scarce. This study aimed to investigate associations of indoor O3 during sleep with cardiorespiratory function and potential predisposing factors. A prospective study among 81 adults was conducted in Beijing, China. Repeated measurements of cardiorespiratory indices reflecting lung function, airway inflammation, cardiac autonomic function, blood pressure, systemic inflammation, platelet and glucose were performed on each subject. Real-time concentrations of indoor O3 during sleep were monitored. Associations of O3 with cardiorespiratory indices were evaluated using linear mixed-effect model. Effect modification by baseline lifestyles (diet, physical activity, sleep-related factors) and psychological status (stress and depression) were investigated through interaction analysis. The average indoor O3 concentration during sleep was 20.3 µg/m3, which was well below current Chinese indoor air quality standard of 160 µg/m3. O3 was associated with most respiratory indicators of decreased airway function except airway inflammation; whereas the cardiovascular effects were only manifested in autonomic dysfunction and not in others. An interquartile range increases in O3 at 6-h average was associated with changes of -3.60 % (95 % CI: -6.19 %, -0.93 %) and -9.60 % (95 % CI: -14.53 %, -4.39 %) in FVC and FEF25-75, respectively. Further, stronger effects were noted among participants with specific dietary patterns, poorer sleep and higher level of depression. This study provides the first general population-based evidence that low-level exposure to indoor O3 during sleep has greater effects on the respiratory system than on the cardiovascular system. Our findings identify the respiratory system as an important target for indoor O3 exposure, and particularly highlight the need for greater awareness of indoor air quality, especially during sleep.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Adult , Humans , Air Pollution/analysis , Prospective Studies , Air Pollutants/adverse effects , Air Pollutants/analysis , Ozone/adverse effects , Ozone/analysis , China , Inflammation , Particulate Matter/analysis , Environmental Exposure/analysis
4.
Sci Total Environ ; 947: 174519, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38972410

ABSTRACT

The health effects of ultrafine particles (UFPs) are of growing global concern, but the epidemiological evidence remains limited. Sleep-disordered breathing (SDB) characterized by hypoxemia is a prevalent condition linked to many debilitating chronic diseases. However, the role of UFPs in the development of SDB is lacking. Therefore, this prospective panel study was performed to specifically investigate the association of short-term exposure to UFPs with SDB parameters in patients with chronic obstructive pulmonary disease (COPD). Ninety-one COPD patients completed 226 clinical visits in Beijing, China. Personal exposure to ambient UFPs of 0-7 days was estimated based on infiltration factor and time-activity pattern. Real-time monitoring of sleep oxygen saturation, spirometry, respiratory questionnaires and airway inflammation detection were performed at each clinical visit. Generalized estimating equation was used to estimate the effects of UFPs. Exposure to UFPs was significantly associated with increased oxygen desaturation index (ODI) and percent of the time with oxygen saturation below 90 % (T90), with estimates of 21.50 % (95%CI: 6.38 %, 38.76 %) and 18.75 % (95%CI: 2.83 %, 37.14 %), respectively, per 3442 particles/cm3 increment of UFPs at lag 0-3 h. Particularly, UFPs' exposure within 0-7 days was positively associated with the concentration of alveolar nitric oxide (CaNO), and alveolar eosinophilic inflammation measured by CaNO exceeding 5 ppb was associated with 29.63 % and 33.48 % increases in ODI and T90, respectively. In addition, amplified effects on oxygen desaturation were observed in current smokers. Notably, individuals with better lung function and activity tolerance were more affected by ambient UFPs due to longer time spent outdoors. To our knowledge, this is the first study to link UFPs to hypoxemia during sleep and uncover the key role of alveolar eosinophilic inflammation. Our findings provide new insights into the effect spectrum of UFPs and potential environmental and behavioral intervention strategies to protect susceptible populations.


Subject(s)
Air Pollutants , Particulate Matter , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/epidemiology , Male , Female , Air Pollutants/adverse effects , Air Pollutants/analysis , Middle Aged , Aged , Beijing/epidemiology , Sleep/physiology , Prospective Studies , Environmental Exposure/statistics & numerical data , Sleep Apnea Syndromes , Particle Size , Oxygen , Hypoxia , Oxygen Saturation/physiology
5.
J Hazard Mater ; 454: 131550, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37148791

ABSTRACT

Air pollution contributes substantially to the development of chronic obstructive pulmonary disease (COPD). To date, the effect of air pollution on oxygen saturation (SpO2) during sleep and potential susceptibility factors remain unknown. In this longitudinal panel study, real-time SpO2 was monitored in 132 COPD patients, with 270 nights (1615 h) of sleep SpO2 recorded. Exhaled nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) were measured to assess airway inflammatory characteristics. Exposure levels of air pollutants were estimated by infiltration factor method. Generalized estimating equation was used to investigate the effect of air pollutants on sleep SpO2. Ozone, even at low levels (<60 µg/m3), was significantly associated with decreased SpO2 and extended time of oxygen desaturation (SpO2 < 90%), especially in the warm season. The associations of other pollutants with SpO2 were weak, but significant adverse effects of PM10 and SO2 were observed in the cold season. Notably, stronger effects of ozone were observed in current smokers. Consistently, smoking-related airway inflammation, characterized by higher levels of exhaled CO and H2S but lower NO, significantly augmented the effect of ozone on SpO2 during sleep. This study highlights the importance of ozone control in protecting sleep health in COPD patients.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Pulmonary Disease, Chronic Obstructive , Humans , Air Pollutants/analysis , Oxygen Saturation , Particulate Matter/analysis , Environmental Exposure/analysis , Air Pollution/analysis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/chemically induced , Ozone/analysis , Phenotype , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL