Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.173
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(49): e2314392120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011546

ABSTRACT

Since the outbreak of Severe Acute Respiratory Syndrome Virus-2 (SARS-CoV-2) in 2019, more than 15 million spike protein sequences have been identified, raising a new challenge for the development of a broadly protective vaccine against the various emerging variants. We found that the virus, like most other human viruses, depends on host-made glycans to shield the conserved epitopes on spike protein from immune response and demonstrated that deletion of the glycan shields exposed highly conserved epitopes and elicited broadly protective immune responses. In this study, we identified 17 conserved epitopes from 14 million spike protein sequences and 11 of the conserved epitopes are in the S2 domain, including the six most conserved epitopes in the stem region. We also demonstrated that deletion of the glycosites in the spike messenger RNA (mRNA) S2 domain or the stem region exposed the highly conserved epitopes and elicited broadly protective immune responses, particularly CD-8+ T cell response against various SARS-CoV-2 variants, and other human coronaviruses including MERS, SARS viruses, and those causing common cold.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Sugars , RNA, Messenger/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic , Epitopes , Antibodies, Viral , mRNA Vaccines
2.
Eur J Immunol ; : e2350655, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973083

ABSTRACT

Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.

3.
Genome Res ; 32(7): 1285-1297, 2022 07.
Article in English | MEDLINE | ID: mdl-35835565

ABSTRACT

Heat shock is a common environmental stress, although the response of the nucleus to it remains controversial in mammalian cells. Acute reaction and chronic adaptation to environmental stress may have distinct internal rewiring in the gene regulation networks. However, this difference remains largely unexplored. Here, we report that chromatin conformation and chromatin accessibility respond differently in short- and long-term heat shock in human K562 cells. We found that chromatin conformation in K562 cells was largely stable in response to short-term heat shock, whereas it showed clear and characteristic changes after long-term heat treatment with little alteration in chromatin accessibility during the whole process. We further show in silico and experimental evidence strongly suggesting that changes in chromatin conformation may largely stem from an accumulation of cells in the M stage of the cell cycle in response to heat shock. Our results represent a paradigm shift away from the controversial view of chromatin response to heat shock and emphasize the necessity of cell cycle analysis when interpreting bulk Hi-C data.


Subject(s)
Chromatin , Heat-Shock Response , Animals , Cell Cycle Checkpoints/genetics , Chromatin/genetics , Genomics , Heat-Shock Response/genetics , Humans , K562 Cells , Mammals/genetics
4.
Genomics ; 116(5): 110931, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39209049

ABSTRACT

The clinical benefit of anti-programmed cell death protein 1 (PD-1)-based immunotherapy among patients with microsatellite instable (MSI) endometrial cancer (EC) precedes that of microsatellite stable (MSS) EC, the mechanisms of which have not been fully understood. Circular RNAs (circRNAs) were reported to modulate immune evasion in several types of malignancies, while their roles in the immune regulation in EC remain largely unknown. Here, we conducted circRNA array analysis and mRNA-Sequencing of 10 MSI EC samples and 10 MSS EC samples and identified 1083 differentially expressed circRNAs (DE-circRNAs) and 864 differentially expressed mRNAs, based on which we constructed a circRNA-miRNA-mRNA comprehensive network consisting of 35 DE-circRNAs, 56 predicted miRNAs and 24 differentially expressed mRNAs. Finally, we confirmed hsa_circ_0058230 being positively correlated with CD8+ T cells infiltration, suggesting that it might take a part in anti-tumor immunity in EC.

5.
Mol Cancer ; 23(1): 157, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095854

ABSTRACT

BACKGROUND: Tumor heterogeneity presents a formidable challenge in understanding the mechanisms driving tumor progression and metastasis. The heterogeneity of hepatocellular carcinoma (HCC) in cellular level is not clear. METHODS: Integration analysis of single-cell RNA sequencing data and spatial transcriptomics data was performed. Multiple methods were applied to investigate the subtype of HCC tumor cells. The functional characteristics, translation factors, clinical implications and microenvironment associations of different subtypes of tumor cells were analyzed. The interaction of subtype and fibroblasts were analyzed. RESULTS: We established a heterogeneity landscape of HCC malignant cells by integrated 52 single-cell RNA sequencing data and 5 spatial transcriptomics data. We identified three subtypes in tumor cells, including ARG1+ metabolism subtype (Metab-subtype), TOP2A+ proliferation phenotype (Prol-phenotype), and S100A6+ pro-metastatic subtype (EMT-subtype). Enrichment analysis found that the three subtypes harbored different features, that is metabolism, proliferating, and epithelial-mesenchymal transition. Trajectory analysis revealed that both Metab-subtype and EMT-subtype originated from the Prol-phenotype. Translation factor analysis found that EMT-subtype showed exclusive activation of SMAD3 and TGF-ß signaling pathway. HCC dominated by EMT-subtype cells harbored an unfavorable prognosis and a deserted microenvironment. We uncovered a positive loop between tumor cells and fibroblasts mediated by SPP1-CD44 and CCN2/TGF-ß-TGFBR1 interaction pairs. Inhibiting CCN2 disrupted the loop, mitigated the transformation to EMT-subtype, and suppressed metastasis. CONCLUSION: By establishing a heterogeneity landscape of malignant cells, we identified a three-subtype classification in HCC. Among them, S100A6+ tumor cells play a crucial role in metastasis. Targeting the feedback loop between tumor cells and fibroblasts is a promising anti-metastatic strategy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Animals , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Genetic Heterogeneity , Mice , Cell Line, Tumor , Prognosis , Gene Expression Profiling , Transcriptome , Computational Biology/methods , Neoplasm Metastasis
6.
Eur Respir J ; 63(5)2024 May.
Article in English | MEDLINE | ID: mdl-38514095

ABSTRACT

INTRODUCTION: Patients with allergic bronchopulmonary aspergillosis (ABPA) suffer from repeated exacerbations. The involvement of T-cell subsets remains unclear. METHODS: We enrolled ABPA patients, asthma patients and healthy controls. T-helper type 1 (Th1), 2 (Th2) and 17 (Th17) cells, regulatory T-cells (Treg) and interleukin (IL)-21+CD4+T-cells in total or sorted subsets of peripheral blood mononuclear cells and ABPA bronchoalveolar lavage fluid (BALF) were analysed using flow cytometry. RNA sequencing of subsets of CD4+T-cells was done in exacerbated ABPA patients and healthy controls. Antibodies of T-/B-cell co-cultures in vitro were measured. RESULTS: ABPA patients had increased Th2 cells, similar numbers of Treg cells and decreased circulating Th1 and Th17 cells. IL-5+IL-13+IL-21+CD4+T-cells were rarely detected in healthy controls, but significantly elevated in the blood of ABPA patients, especially the exacerbated ones. We found that IL-5+IL-13+IL-21+CD4+T-cells were mainly peripheral T-helper (Tph) cells (PD-1+CXCR5-), which also presented in the BALF of ABPA patients. The proportions of circulating Tph cells were similar among ABPA patients, asthma patients and healthy controls, while IL-5+IL-13+IL-21+ Tph cells significantly increased in ABPA patients. Transcriptome data showed that Tph cells of ABPA patients were Th2-skewed and exhibited signatures of follicular T-helper cells. When co-cultured in vitro, Tph cells of ABPA patients induced the differentiation of autologous B-cells into plasmablasts and significantly enhanced the production of IgE. CONCLUSION: We identified a distinctly elevated population of circulating Th2-skewed Tph cells that induced the production of IgE in ABPA patients. It may be a biomarker and therapeutic target for ABPA.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary , B-Lymphocytes , Bronchoalveolar Lavage Fluid , Th2 Cells , Humans , Male , Female , Aspergillosis, Allergic Bronchopulmonary/immunology , Adult , Th2 Cells/immunology , Middle Aged , Case-Control Studies , B-Lymphocytes/immunology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , T-Lymphocytes, Regulatory/immunology , Asthma/immunology , Th17 Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology
7.
BMC Med ; 22(1): 304, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39358745

ABSTRACT

BACKGROUND: S100ß is a biomarker of astroglial damage, the level of which is significantly increased following brain injury. However, the characteristics of S100ß and its association with prognosis in patients with acute ischemic stroke following intravenous thrombolysis (IVT) remain unclear. METHODS: Patients in this multicenter prospective cohort study were prospectively and consecutively recruited from 16 centers. Serum S100ß levels were measured 24 h after IVT. National Institutes of Health Stroke Scale (NIHSS) and hemorrhagic transformation (HT) were measured simultaneously. NIHSS at 7 days after stroke, final infarct volume, and modified Rankin Scale (mRS) scores at 90 days were also collected. An mRS score ≥ 2 at 90 days was defined as an unfavorable outcome. RESULTS: A total of 1072 patients were included in the analysis. The highest S100ß levels (> 0.20 ng/mL) correlated independently with HT and higher NIHSS at 24 h, higher NIHSS at 7 days, larger final infarct volume, and unfavorable outcome at 3 months. The patients were divided into two groups based on dominant and non-dominant stroke hemispheres. The highest S100ß level was similarly associated with the infarct volume in patients with stroke in either hemisphere (dominant: ß 36.853, 95% confidence interval (CI) 22.659-51.048, P < 0.001; non-dominant: ß 23.645, 95% CI 10.774-36.516, P = 0.007). However, serum S100ß levels at 24 h were more strongly associated with NIHSS scores at 24 h and 3-month unfavorable outcome in patients with dominant hemisphere stroke (NIHSS: ß 3.470, 95% CI 2.392-4.548, P < 0.001; 3-month outcome: odds ratio (OR) 5.436, 95% CI 2.936-10.064, P < 0.001) than in those with non-dominant hemisphere stroke (NIHSS: ß 0.326, 95% CI  - 0.735-1.387, P = 0.547; 3-month outcome: OR 0.882, 95% CI 0.538-1.445, P = 0.619). The association of S100ß levels and HT was not significant in either stroke lateralization group. CONCLUSIONS: Serum S100ß levels 24 h after IVT were independently associated with HT, infarct volume, and prognosis in patients with IVT, which suggests the application value of serum S100ß in judging the degree of disease and predicting prognosis.


Subject(s)
S100 Calcium Binding Protein beta Subunit , Stroke , Thrombolytic Therapy , Humans , Prospective Studies , S100 Calcium Binding Protein beta Subunit/blood , Female , Male , Aged , Middle Aged , Prognosis , Thrombolytic Therapy/methods , Stroke/blood , Stroke/drug therapy , Biomarkers/blood , Aged, 80 and over , Administration, Intravenous , Treatment Outcome
8.
Small ; 20(33): e2400505, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38477685

ABSTRACT

Ammonia production by electrocatalytic nitrate reduction reaction (NO3RR) in water streams is anticipated as a zero-carbon route. Limited by dilute nitrate in natural sewage and the electrostatic repulsion between NO3 - and cathode, NO3RR can hardly be achieved energy-efficiently. The hydrophilic Cu@CuCoO2 nano-island dispersed on support can enrich NO3 - and produce a sensitive current response, followed by electrosynthesis of ammonia through atomic hydrogen (*H) is reported. The accumulated NO3 - can be partially converted to NO2 - without external electric field input, confirming that the Cu@CuCoO2 nano-island can strongly bind NO3 - and then trigger the reduction via dynamic evolution between Cu-Co redox sites. Through the identification of intermediates and theoretical computation. it is found that the N-side hydrogenation of *NO is the optimal reaction step, and the formation of N─N dimer may be prevented. An NH3 product selectivity of 93.5%, a nitrate conversion of 96.1%, and an energy consumption of 0.079 kWh gNH3 -1 is obtained in 48.9 mg-N L-1 naturally nitrate-polluted streams, which outperforms many works using such dilute nitrate influent. Conclusively, the electrocatalytic system provides a platform to guarantee the self-sufficiency of dispersed ammonia production in agricultural regions.

9.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34875002

ABSTRACT

As the basal bricks, the dynamics and arrangement of nucleosomes orchestrate the higher architecture of chromatin in a fundamental way, thereby affecting almost all nuclear biology processes. Thanks to its rather simple protocol, assay for transposase-accessible chromatin using sequencing (ATAC)-seq has been rapidly adopted as a major tool for chromatin-accessible profiling at both bulk and single-cell levels; however, to picture the arrangement of nucleosomes per se remains a challenge with ATAC-seq. In the present work, we introduce a novel ATAC-seq analysis toolkit, named decoding nucleosome organization profile based on ATAC-seq data (deNOPA), to predict nucleosome positions. Assessments showed that deNOPA outperformed state-of-the-art tools with ultra-sparse ATAC-seq data, e.g. no more than 0.5 fragment per base pair. The remarkable performance of deNOPA was fueled by the short fragment reads, which compose nearly half of sequenced reads in the ATAC-seq libraries and are commonly discarded by state-of-the-art nucleosome positioning tools. However, we found that the short fragment reads enrich information on nucleosome positions and that the linker regions were predicted by reads from both short and long fragments using Gaussian smoothing. Last, using deNOPA, we showed that the dynamics of nucleosome organization may not directly couple with chromatin accessibility in the cis-regulatory regions when human cells respond to heat shock stimulation. Our deNOPA provides a powerful tool with which to analyze the dynamics of chromatin at nucleosome position level with ultra-sparse ATAC-seq data.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Nucleosomes , Chromatin/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Nucleosomes/genetics , Sequence Analysis, DNA
10.
J Transl Med ; 22(1): 272, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38475878

ABSTRACT

BACKGROUND: In HBV-associated HCC, T cells often exhibit a state of functional exhaustion, which prevents the immune response from rejecting the tumor and allows HCC to progress. Moreover, polymerase-specific T cells exhibit more severe T-cell exhaustion compared to core-specific T cells. However, whether HBV DNA polymerase drives HBV-specific CD8+ T cell exhaustion in HBV-related HCC remains unclear. METHODS: We constructed a Huh7 cell line stably expressing HA-HBV-DNA-Pol and applied co-culture systems to clarify its effect on immune cell function. We also examined how HBV-DNA-Pol modulated PD-L1 expression in HCC cells. In addition, HBV-DNA-Pol transgenic mice were used to elucidate the underlying mechanism of HBV-DNA-Pol/PD-L1 axis-induced T cell exhaustion. RESULTS: Biochemical analysis showed that Huh7 cells overexpressing HBV-DNA-Pol inhibited the proliferation, activation, and cytokine secretion of Jurkat cells and that this effect was dependent on their direct contact. A similar inhibitory effect was observed in an HCC mouse model. PD-L1 was brought to our attention during screening. Our results showed that the overexpression of HBV-DNA-Pol upregulated PD-L1 mRNA and protein expression. PD-L1 antibody blockade reversed the inhibitory effect of Huh7 cells overexpressing HBV-DNA-Pol on Jurkat cells. Mechanistically, HBV-DNA-Pol interacts with PARP1, thereby inhibiting the nuclear translocation of PARP1 and further upregulating PD-L1 expression. CONCLUSIONS: Our findings suggest that HBV-DNA-Pol can act as a regulator of PD-L1 in HCC, thereby directing anti-cancer immune evasion, which further provides a new idea for the clinical treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Hepatitis B virus/genetics , DNA, Viral , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , DNA-Directed DNA Polymerase/metabolism
11.
J Exp Bot ; 75(10): 3153-3170, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38394357

ABSTRACT

Endophytic symbioses between plants and fungi are a dominant feature of many terrestrial ecosystems, yet little is known about the signaling that defines these symbiotic associations. Hydrogen peroxide (H2O2) is recognized as a key signal mediating the plant adaptive response to both biotic and abiotic stresses. However, the role of H2O2 in plant-fungal symbiosis remains elusive. Using a combination of physiological analysis, plant and fungal deletion mutants, and comparative transcriptomics, we reported that various environmental conditions differentially affect the interaction between Arabidopsis and the root endophyte Phomopsis liquidambaris, and link this process to alterations in H2O2 levels and H2O2 fluxes across root tips. We found that enhanced H2O2 efflux leading to a moderate increase in H2O2 levels at the plant-fungal interface is required for maintaining plant-fungal symbiosis. Disturbance of plant H2O2 homeostasis compromises the symbiotic ability of plant roots. Moreover, the fungus-regulated H2O2 dynamics modulate the rhizosphere microbiome by selectively enriching for the phylum Cyanobacteria, with strong antioxidant defenses. Our results demonstrated that the regulation of H2O2 dynamics at the plant-fungal interface affects the symbiotic outcome in response to external conditions and highlight the importance of the root endophyte in reshaping the rhizosphere microbiota.


Subject(s)
Arabidopsis , Endophytes , Homeostasis , Hydrogen Peroxide , Microbiota , Plant Roots , Rhizosphere , Symbiosis , Arabidopsis/microbiology , Arabidopsis/physiology , Endophytes/physiology , Hydrogen Peroxide/metabolism , Plant Roots/microbiology , Plant Roots/physiology , Ascomycota/physiology
12.
Mol Reprod Dev ; 91(2): e23731, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38404010

ABSTRACT

Premature ovarian insufficiency (POI) patients experience a decline in ovarian function and a reduction in serum reproductive hormones, leading to a significant impact on the outcomes of assisted reproductive technology. Despite the absence of an effective clinical treatment to restore fertility in POI patients, recent research has indicated that cord blood plasma (CBP) derived from human umbilical cord blood (hUCB) may offer therapeutic benefits for various degenerative diseases. The primary aim of this study is to explore approaches for enhancing ovarian function and serum reproductive hormones through the administration of CBP in a murine model. Initially, hUCB was utilized to obtain CBP (CBP), which was subsequently analyzed for cytokine and growth factor profiles in comparison to adult blood plasma (ABP) by use of flow cytometry. Subsequently, POI mouse models were established through the induction of 4-vinylcyclohexene diepoxide, followed by the injection of CBP into the tail. At 7, 14, and 21 days posttreatment, mouse ovaries and blood were collected, and their estrus cycle, body weight, and ovarian weights were evaluated using precise electronic balance. Finally, ovarian morphology and follicle number were assessed through HE staining, while serum levels of anti-Müllerian hormone (AMH), estradiol (E2) and follicle-stimulating hormone (FSH) were determined by ELISA. Our study revealed that individuals with CBP exhibited significantly lower concentrations of proinflammatory cytokines, including IL-ß (p < 0.01) and IL-2 (p < 0.05), while displaying elevated levels of anti-inflammatory cytokines and chemokines, such as IL-2, IL-4, IL-6, IL-8, IL-12P70, IL-17A, IP-10, interferon-γ, and tumor necrosis factor-α (p < 0.01). Furthermore, CBP demonstrated remarkably higher levels of growth factors, including transforming growth factor-ß1, vascular endothelial growth factor, and insulin-like growth factor-1 (p < 0.01) than ABP. Notably, our investigation also revealed that CBP restored the content of serum reproductive hormones, such as AMH, E2, and FSH (p < 0.05), and increased the number of primordial and primary follicles (p < 0.01) and decreased the number of luteal and atretic follicles (p < 0.01) in vivo. Our findings suggested that CBP-secreted cytokines and growth factors could be restored POI ovarian function, enhanced serum reproductive hormones and rescued follicular development in vivo. These findings further support the potential of CBP as a promising strategy in clinical applications for POI related infertility.


Subject(s)
Cytokines , Primary Ovarian Insufficiency , Female , Adult , Humans , Mice , Animals , Fetal Blood , Vascular Endothelial Growth Factor A , Interleukin-2 , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/pathology , Estradiol , Follicle Stimulating Hormone , Intercellular Signaling Peptides and Proteins , Plasma
13.
World J Urol ; 42(1): 23, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38197979

ABSTRACT

PURPOSE: To retrospectively investigate the safety and efficacy of radiotherapy combined with chemotherapy for recurrent metastatic renal pelvic and ureteral carcinoma. METHODS: 109 patients were enrolled in this study, including 44 patients in the radiochemotherapy group and 65 patients in the chemotherapy group. Propensity score matching (PSM) was used to balance the baseline characteristics of the two groups by 1:1 matching. Kaplan-Meier method was used to calculate PFS and OS. Cox regression model was used for multivariate analysis. The side effects were evaluated by CTCAE v5.0 RESULTS: The median follow-up time was 14.5 months. Multivariate analysis showed that radiotherapy was a good independent prognostic factor for OS (HR: 0.327, 95% CI 0.157-0.680, P = 0.003). After matching, there were 40 patients in both groups, and the median PFS and OS in the radiochemotherapy group were longer than those in the chemotherapy group (PFS: 10.4 vs. 6.7 months, P = 0.035; OS: 43.5 vs. 18.8 months, P < 0.001). In addition, in the radiochemotherapy group, patients treated with radiotherapy before first-line chemotherapy failure had a longer PFS than those treated with radiotherapy after chemotherapy failure (median PFS: 15.7 vs. 6 months, P = 0.003). There was no significant difference in the incidence of grade 3-4 toxicities between the two groups (52.3% vs. 50.8%, P = 0.878). CONCLUSION: For patients with recurrent metastatic renal pelvic and ureteral carcinoma, radiotherapy combined with chemotherapy is well tolerable and expected to bring long-term survival benefits, and the benefits of early interventional radiotherapy may be more obvious.


Subject(s)
Carcinoma , Ureteral Neoplasms , Humans , Retrospective Studies , Ureteral Neoplasms/drug therapy , Kidney Pelvis
14.
Int Microbiol ; 27(2): 535-544, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37505307

ABSTRACT

Cajaninstilbene acid (CSA), longistylin A (LLA), and longistylin C (LLC) are three characteristic stilbenes isolated from pigeon pea. The objective of this study was to evaluate the antibacterial activity of these stilbenes against Staphylococcus aureus and even methicillin-resistant Staphylococcus aureus (MRSA) and test the possibility of inhibiting biofilm formation. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of these stilbenes were evaluated. And the results showed that LLA was most effective against tested strains with MIC and MBC values of 1.56 µg/mL followed by LLC with MIC and MBC values of 3.12 µg/mL and 6.25 µg/mL as well as CSA with MIC and MBC values of 6.25 µg/mL and 6.25-12.5 µg/mL. Through growth curve and cytotoxicity analysis, the concentrations of these stilbenes were determined to be set at their respective 1/4 MIC in the follow-up research. In an anti-biofilm formation assay, these stilbenes were found to be effectively inhibited bacterial proliferation, biofilm formation, and key gene expressions related to the adhesion and virulence of MRSA. It is the first time that the anti-S. aureus and MRSA activities of the three stilbenes have been systematically reported. Conclusively, these findings provide insight into the anti-MRSA mechanism of stilbenes from pigeon pea, indicating these compounds may be used as antimicrobial agents or additives for food with health functions, and contribute to the development as well as application of pigeon pea in food science.


Subject(s)
Cajanus , Methicillin-Resistant Staphylococcus aureus , Stilbenes , Anti-Bacterial Agents/pharmacology , Stilbenes/pharmacology , Microbial Sensitivity Tests , Antibodies/pharmacology , Biofilms
15.
Ann Allergy Asthma Immunol ; 133(2): 168-176.e1, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38777120

ABSTRACT

BACKGROUND: Allergic bronchopulmonary aspergillosis (ABPA) is characterized by enhanced TH2 inflammatory response. Fractional exhaled nitric oxide (FeNO) measurement has been used as a valuable tool in predicting the development and management of asthma, another typical TH2 inflammation. However, the clinical significance of FeNO in ABPA remains unclear. OBJECTIVE: To investigate the association between FeNO and the prognosis of patients with ABPA to provide a basis for the use of FeNO in evaluating the efficacy of glucocorticoids in ABPA treatment. METHODS: This study comprised 2 parts; 58 patients were enrolled in the retrospective study. Clinical indexes in patients with different prognoses were compared, and receiver operating characteristic curve analysis was used to determine the threshold value. The prospective observational study involved 61 patients who were regularly followed up at 4 to 6 weeks and 6 months since the initial treatment. Patients were grouped on the basis of baseline FeNO values; correlation analysis was performed in the clinical data. RESULTS: Different prognoses were observed between patients with high and low baseline FeNO values, with a threshold value of 57 parts per billion. The percentage of Aspergillus fumigatus-specific IgE, percentage of positive A fumigatus-specific IgG, and relapse/exacerbation rate differed significantly between the high and low FeNO groups. Patients with higher FeNO needed longer treatment duration and showed shorter interval between glucocorticoid withdrawal and the next relapse/exacerbation. CONCLUSION: Our findings indicate that the level of FeNO is associated with the prognosis of ABPA. It can serve as an independent and valuable biomarker for evaluating the effectiveness of glucocorticoid treatment.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary , Aspergillus fumigatus , Biomarkers , Glucocorticoids , Nitric Oxide , Humans , Aspergillosis, Allergic Bronchopulmonary/drug therapy , Aspergillosis, Allergic Bronchopulmonary/diagnosis , Female , Male , Glucocorticoids/therapeutic use , Adult , Prognosis , Biomarkers/analysis , Nitric Oxide/analysis , Nitric Oxide/metabolism , Aspergillus fumigatus/immunology , Middle Aged , Retrospective Studies , Immunoglobulin E/blood , Prospective Studies , Fractional Exhaled Nitric Oxide Testing , Immunoglobulin G
16.
Org Biomol Chem ; 22(24): 4978-4986, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38832762

ABSTRACT

Ganoderma lucidum, a fungus used in traditional Chinese medicine, is known for its medicinal value attributed to its active components called Ganoderma triterpenoids (GTs). However, the limited isolation rate of these GTs has hindered their potential as promising drug candidates. Therefore, it is imperative to achieve large-scale preparation of GTs. In this study, four GTs were effectively synthesised from lanosterol. The antitumor activity of these GTs was evaluated in vivo. Endertiin B exhibited potent inhibitory activity against breast cancer cells (9.85 ± 0.91 µM and 12.12 ± 0.95 µM). Further investigations demonstrated that endertiin B significantly upregulated p21 and p27 and downregulated cyclinD1 expression, arresting the cell cycle at the G0/G1 phase and inducing apoptosis by decreasing BCL-2 and increasing BAX and BAK levels. Additionally, endertiin B was found to reduce the expression of proteins associated with the PI3K-AKT signaling pathway. To summarize, endertiin B effectively inhibited cell proliferation by blocking the cell cycle and inducing apoptosis through the PI3K-AKT pathway.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Reishi , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/chemical synthesis , Triterpenes/isolation & purification , Reishi/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Apoptosis/drug effects , Drug Screening Assays, Antitumor , Animals , Mice , Cell Line, Tumor , Dose-Response Relationship, Drug , Structure-Activity Relationship , Female , Cell Cycle/drug effects , Molecular Structure
17.
BMC Infect Dis ; 24(1): 603, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898395

ABSTRACT

BACKGROUND: the mortality associated with severe malaria due to Plasmodiun falciparum remains high despite improvements in malaria management. Case prensentation: this case series aims to describe the efficacy and safety of the exchange transfusion combined with artesunate (ET-AS) regimen in severe P. falciparum malaria. Eight patients diagnosed with severe P. falciparum malaria were included. All patients underwent ET using the COBE Spectra system. The aimed for a post-exchange hematocrit of 30%. Half the estimated blood volume was removed and replaced using fresh frozen plasma. The regimen was well-tolerated without complications. The parasite clearance time ranged from 1 ~ 5 days. Five patients with cerebral malaria exhibited full improved consciousness within 3 days, while patient2 with hemolysis improved on day 2. Liver function improved within 1 ~ 6 days, and patient 1 and patient 6 showed improvements renal function on days 18 and 19, respectively. The length of intensive care unit stay range from 2 ~ 10 days, and all patients treated with ET-AS remained in the hospital for 3 ~ 19 days. CONCLUSIONS: these preliminary results suggest that ET-AS regimens are a safe and effective therapy for severe P. falciparum malaria and can benefit patients in clinical settings.


Subject(s)
Antimalarials , Artemisinins , Artesunate , Exchange Transfusion, Whole Blood , Malaria, Falciparum , Humans , Artesunate/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/therapy , Male , Adult , Female , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Middle Aged , Artemisinins/therapeutic use , Treatment Outcome , Young Adult , Plasmodium falciparum/drug effects , Aged , Combined Modality Therapy
18.
Mol Biol Rep ; 51(1): 266, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302764

ABSTRACT

BACKGROUND: Rhein, which has antioxidant and anti-inflammatory response properties, is a beneficial treatment for different pathologies. However, the mechanism by which rhein protects against myocardial ischemic injury is poorly understood. METHODS AND RESULTS: To establish an acute myocardial infarction (AMI) rat model, we performed left anterior descending (LAD) ligation. Sprague‒Dawley rats were randomly divided into four groups: sham, AMI, AMI + rhein (AMI + R), and AMI + mitochondrial fission inhibitor (AMI + M). The extent of myocardial injury was evaluated by TTC staining, serum myocardial injury markers, and HE and Masson staining. Cardiac mitochondria ultrastructure was visualized by transmission electron microscopy. TUNEL assay and flow cytometry analysis were used to estimate cell apoptosis. Protein expression levels were measured by Western blotting. In vitro, the efficacy of rhein was assessed in H9c2 cells under hypoxic condition. Our results revealed that rats with AMI exhibited increased infarct size and indicators of myocardial damage, along with activation of Drp1-dependent mitochondrial fission, decreased mitophagy and increased apoptosis rates. However, pretreatment with rhein significantly reversed these effects and demonstrated similar efficacy to Mdivi-1. Furthermore, rhein pretreatment protected against myocardial ischemic injury by inhibiting mitochondrial fission, as evidenced by decreased Drp1 expression. It also enhanced mitophagy, as indicated by increased expression of Beclin1, Pink1 and Parkin, an increased LC3-II/LC3-I ratio and increased formation of autolysosomes. Additionally, rhein pretreatment mitigated apoptosis in AMI. These results were also confirmed in vitro in H9c2 cells. CONCLUSION: Our results demonstrate that rhein pretreatment exerts cardioprotective effects against myocardial ischemic injury via the Drp1/Pink1/Parkin pathway.


Subject(s)
Anthraquinones , Mitochondrial Dynamics , Protein Kinases , Rats , Animals , Rats, Sprague-Dawley , Protein Kinases/metabolism , Autophagy , Mitochondria/metabolism , Apoptosis , Ubiquitin-Protein Ligases/metabolism
19.
Exp Cell Res ; 433(2): 113823, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37890607

ABSTRACT

Breast carcinoma (BC) is one of the most common malignant cancers in females, and metastasis remains the leading cause of death in these patients. Chemotaxis plays an important role in cancer cell metastasis and the mechanism of breast cancer chemotaxis has become a central issue in contemporary research. PKCζ, a member of the atypical PKC family, has been reported to be an essential component of the EGF-stimulated chemotactic signaling pathway. However, the molecular mechanism through which PKCζ regulates chemotaxis remains unclear. Here, we used a proteomic approach to identify PKCζ-interacting proteins in breast cancer cells and identified VASP as a potential binding partner. Intriguingly, stimulation with EGF enhanced this interaction and induced the translocalization of PKCζ and VASP to the cell membrane. Further experiments showed that PKCζ catalyzes the phosphorylation of VASP at Ser157, which is critical for the biological function of VASP in regulating chemotaxis and actin polymerization in breast cancer cells. Furthermore, in PKCζ knockdown BC cells, the enrichment of VASP at the leading edge was reduced, and its interaction with profilin1 was attenuated, thereby reducing the chemotaxis and overall motility of breast cancer cells after EGF treatment. In functional assays, PKCζ promoted chemotaxis and motility of BC cells through VASP. Our findings demonstrate that PKCζ, a new kinase of VASP, plays an important role in promoting breast cancer metastasis and provides a theoretical basis for expanding new approaches to tumor biotherapy.


Subject(s)
Breast Neoplasms , Chemotaxis , Protein Kinase C , Female , Humans , Breast Neoplasms/metabolism , Cell Line, Tumor , Chemotaxis/genetics , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Phosphoproteins/metabolism , Phosphorylation , Protein Kinase C/genetics , Protein Kinase C/metabolism , Proteomics
20.
Acta Pharmacol Sin ; 45(7): 1520-1529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38519646

ABSTRACT

Parkin (PARK2) deficiency is frequently observed in various cancers and potentially promotes tumor progression. Here, we showed that Parkin expression is downregulated in liver cancer tissues, which correlates with poor patient survival. Parkin deficiency in liver cancer cells promotes migration and metastasis as well as changes in EMT and metastasis markers. A negative correlation exists between TMEFF1 and Parkin expression in liver cancer cells and tumor tissues. Parkin deficiency leads to upregulation of TMEFF1 which promotes migration and metastasis. TMEFF1 transcription is activated by Parkin-induced endogenous TGF-ß production and subsequent phosphorylation of Smad2/3 and its binding to TMEFF1 promotor. TGF-ß inhibitor and TMEFF1 knockdown can reverse shParkin-induced cell migration and changes of EMT markers. Parkin interacts with and promotes the ubiquitin-dependent degradation of HIF-1α/HIF-1ß and p53, which accounts for the suppression of TGF-ß production. Our data have revealed that Parkin deficiency in cancer leads to the activation of the TGF-ß/Smad2/3 pathway, resulting in the expression of TMEFF1 which promotes cell migration, EMT, and metastasis in liver cancer cells.


Subject(s)
Cell Movement , Liver Neoplasms , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Signal Transduction , Transcriptional Activation , Animals , Epithelial-Mesenchymal Transition , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neoplasm Metastasis , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Mice, Nude , Mice
SELECTION OF CITATIONS
SEARCH DETAIL