Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.581
Filter
Add more filters

Publication year range
1.
Mol Cell ; 82(10): 1821-1835.e6, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35381197

ABSTRACT

GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.


Subject(s)
Glutaminase , Glutamine , Apoptosis , Asparagine/genetics , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/metabolism , Humans , Reactive Oxygen Species
2.
Plant Cell ; 34(12): 4816-4839, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36040191

ABSTRACT

Strigolactones (SLs) are a class of phytohormones that regulate plant shoot branching and adventitious root development. However, little is known regarding the role of SLs in controlling the behavior of the smallest unit of the organism, the single cell. Here, taking advantage of a classic single-cell model offered by the cotton (Gossypium hirsutum) fiber cell, we show that SLs, whose biosynthesis is fine-tuned by gibberellins (GAs), positively regulate cell elongation and cell wall thickness by promoting the biosynthesis of very long-chain fatty acids (VLCFAs) and cellulose, respectively. Furthermore, we identified two layers of transcription factors (TFs) involved in the hierarchical regulation of this GA-SL crosstalk. The top-layer TF GROWTH-REGULATING FACTOR 4 (GhGRF4) directly activates expression of the SL biosynthetic gene DWARF27 (D27) to increase SL accumulation in fiber cells and GAs induce GhGRF4 expression. SLs induce the expression of four second-layer TF genes (GhNAC100-2, GhBLH51, GhGT2, and GhB9SHZ1), which transmit SL signals downstream to two ketoacyl-CoA synthase genes (KCS) and three cellulose synthase (CesA) genes by directly activating their transcription. Finally, the KCS and CesA enzymes catalyze the biosynthesis of VLCFAs and cellulose, respectively, to regulate development of high-grade cotton fibers. In addition to providing a theoretical basis for cotton fiber improvement, our results shed light on SL signaling in plant development at the single-cell level.


Subject(s)
Gibberellins , Gossypium , Gossypium/genetics , Gossypium/metabolism , Gibberellins/metabolism , Gene Expression Regulation, Plant , Cotton Fiber , Cell Wall/metabolism , Cellulose/metabolism
3.
Mol Cell Proteomics ; 22(2): 100490, 2023 02.
Article in English | MEDLINE | ID: mdl-36566904

ABSTRACT

Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.


Subject(s)
Aflatoxins , Aspergillus flavus , Humans , Aspergillus flavus/metabolism , Lysine/metabolism , Proteomics , Aflatoxins/metabolism , Protein Processing, Post-Translational
4.
J Am Chem Soc ; 146(7): 4455-4466, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38335066

ABSTRACT

Cytochrome c (cyt c) is a multifunctional protein with varying conformations. However, the conformation of cyt c in its native environment, mitochondria, is still unclear. Here, we applied NMR spectroscopy to investigate the conformation and location of endogenous cyt c within intact mitochondria at natural isotopic abundance, mainly using widespread methyl groups as probes. By monitoring time-dependent chemical shift perturbations, we observed that most cyt c is located in the inner mitochondrial membrane and partially unfolded, which is distinct from its native conformation in solution. When suffering oxidative stress, cyt c underwent oxidative modifications due to increasing reactive oxygen species (ROS), weakening electrostatic interactions with the membrane, and gradually translocating into the inner membrane spaces of mitochondria. Meanwhile, the lethality of oxidatively modified cyt c to cells was reduced compared with normal cyt c. Our findings significantly improve the understanding of the molecular mechanisms underlying the regulation of ROS by cyt c in mitochondria. Moreover, it highlights the potential of NMR to monitor high-concentration molecules at a natural isotopic abundance within intact cells or organelles.


Subject(s)
Cytochromes c , Mitochondria , Cytochromes c/chemistry , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Mitochondrial Membranes/metabolism
5.
J Biomol NMR ; 78(2): 87-94, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38530516

ABSTRACT

The fast motions of proteins at the picosecond to nanosecond timescale, known as fast dynamics, are closely related to protein conformational entropy and rearrangement, which in turn affect catalysis, ligand binding and protein allosteric effects. The most used NMR approach to study fast protein dynamics is the model free method, which uses order parameter S2 to describe the amplitude of the internal motion of local group. However, to obtain order parameter through NMR experiments is quite complex and lengthy. In this paper, we present a machine learning approach for predicting backbone 1H-15N order parameters based on protein NMR structure ensemble. A random forest model is used to learn the relationship between order parameters and structural features. Our method achieves high accuracy in predicting backbone 1H-15N order parameters for a test dataset of 10 proteins, with a Pearson correlation coefficient of 0.817 and a root-mean-square error of 0.131.


Subject(s)
Machine Learning , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Proteins , Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods
6.
Anal Chem ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334355

ABSTRACT

Abnormal fatty acid metabolism is recognized as a key driver of tumor development and progression. Although numerous inhibitors have been developed to target this pathway, finding drugs with high specificity that do not disrupt normal cellular metabolism remains a formidable challenge. In this paper, we introduced a novel real-time NMR-based drug screening technique that operates within living cells. This technique provides a direct way to putatively identify molecular targets involved in specific metabolic processes, making it a powerful tool for cell-based drug screening. Using 2-13C acetate as a tracer, combined with 3D cell clusters and a bioreactor system, our approach enables real-time detection of inhibitors that target fatty acid metabolism within living cells. As a result, we successfully demonstrated the initial application of this method in the discovery of traditional Chinese medicines that specifically target fatty acid metabolism. Elucidating the mechanisms behind herbal medicines remains challenging due to the complex nature of their compounds and the presence of multiple targets. Remarkably, our findings demonstrate the significant inhibitory effect of P. cocos on fatty acid synthesis within cells, illustrating the potential of this approach in analyzing fatty acid metabolism events and identifying drug candidates that selectively inhibit fatty acid synthesis at the cellular level. Moreover, this systematic approach represents a valuable strategy for discovering the intricate effects of herbal medicine.

7.
J Gene Med ; 26(1): e3654, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282153

ABSTRACT

BACKGROUND: The present study aimed to explore the biological role and underlying mechanism of the long non-coding RNA actin filament-associated protein 1-antisense RNA1 (lncRNA AFAP1-AS1) in the progression of tongue squamous cell carcinoma (TSCC). METHODS: A quantitative reverse transcriptase-PCR (RT-qPCR) was conducted to assess relative levels of the miR-133a-5p, lncRNAs AFAP1-AS1 and zinc finger family member 2 (ZIC2) in TSCC cell lines and specimens, whereas ZIC2 protein levels were measured using western blotting. After modifying the levels of expression of lncRNA AFP1-AS1, miR-133a-5p and ZIC2 using lentivirus or plasmid transfection, we examined AKT/epithelial-mesenchymal transition signaling pathway alterations, in vivo carcinogenesis of TSCC in nude mice and in vitro malignant phenotypes. A dual-luciferase reporter assay was conducted to confirm the targeting relationship between ZIC2 and miR-133a-5p, as well as between miR-133a-5p and lncRNA AFAP1-AS1. Based on The Cancer Genome Atlas (TCGA) database, we additionally validated AFP1-AS1. The potential biological pathway for AFP1-AS1 was investigated using gene set enrichment analysis (GSEA). We also evaluated the clinical diagnostic capacities of AFP1-AS1 and clustered the most potential biomarkers with the Mfuzz expression pattern. Finally, we also made relevant drug predictions for AFP1-AS1. RESULTS: In TSCC cell lines and specimens, lncRNA AFAP1-AS1 was upregulated. ZIC2 was upregulated in TSCC cells as a result of lncRNA AFAP1-AS1 overexpression, which also promoted TSCC cell migration, invasion, viability, and proliferation. Via the microRNA sponge effect, it was found that lncRNA AFAP1-AS1 could upregulate ZIC2 by competitively inhibiting miR-133a-5p. Interestingly, knockdown of ZIC2 reversed the biological roles of lncRNA AFAP1-AS1 with respect to inducing malignant phenotypes in TSCC cells. In addition, in vivo overexpression of lncRNA AFAP1-AS1 triggered subcutaneous tumor growth in nude mice implanted with TSCC cells and upregulated ZIC2 in the tumors. The TCGA database findings revealed that AFAP1-AS1 was significantly upregulated in TSCC specimens and had good clinical diagnostic value. The results of GSEA showed that peroxisome proliferator-activated receptor signaling pathway was significantly correlated with low expression of AFP1-AS1. Finally, the results of drug prediction indicated that the group with high AFAP1-AS1 expression was more sensitive to docetaxel, AZD4547, AZD7762 and nilotinib. CONCLUSIONS: The upregulation of lncRNA AFAP1-AS1, which increases TSCC cell viability, migration, proliferation and invasion via the AFAP1-AS1/miR-133a-5p/ZIC2 axis, aids in the progression of TSCC.


Subject(s)
Carcinoma, Squamous Cell , MicroRNAs , RNA, Antisense , RNA, Long Noncoding , Tongue Neoplasms , Animals , Mice , Actin Cytoskeleton/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Microfilament Proteins/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tongue Neoplasms/genetics , RNA, Antisense/genetics
8.
Radiology ; 310(2): e231710, 2024 02.
Article in English | MEDLINE | ID: mdl-38319165

ABSTRACT

Background Preoperative recognition of irreversible bowel necrosis is important, as it provides valuable guidance for surgical strategy selection but also may inform perioperative risk assessment and communication. Few studies have focused on the association between CT signs and bowel necrosis. Purpose To assess the diagnostic accuracy of CT signs to predict bowel necrosis in patients with closed-loop small bowel obstruction (CL-SBO). Materials and Methods This retrospective single-center study included patients who were surgically confirmed to have CL-SBO caused by adhesion or internal hernia between January 2016 and May 2022. Necrosis was determined based on surgical exploration and postoperative pathologic examination. Two radiologists independently reviewed CT signs by both subjective visual assessment and objective measurement. Disagreements were resolved in consensus with a third gastrointestinal radiologist. Univariable and multivariable analyses were used to assess the association between CT signs and bowel necrosis, and Cohen κ was used to assess interobserver agreement. Sensitivity and specificity were calculated for each CT sign. Results This study included 145 patients: 61 (42.1%) in the necrotic group (median age, 62 years [IQR, 51-71.5 years]; 37 [60.7%] women) and 84 (57.9%) in the nonnecrotic group (median age, 61.5 years [IQR, 51-68.8 years]; 51 [60.7%] women). Univariable analysis and multivariable analysis showed that increased attenuation of intestinal contents and increased attenuation of intestinal wall were independent predictors for bowel necrosis (odds ratio = 45.3 and 15.1; P = .001 and P < .001, respectively). Increased attenuation of intestinal contents and increased attenuation of intestinal wall had similar sensitivity (64% and 67%, respectively) and specificity (99% and 92%, respectively) for predicting bowel necrosis. However, interobserver agreement was better for assessing the contents than the wall (κ = 0.84 and 0.59, respectively). Conclusion Increased attenuation of intestinal contents was a highly specific CT sign with good reproducibility to predict bowel necrosis in CL-SBO. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Taourel and Zins in this issue.


Subject(s)
Gastrointestinal Contents , Intestinal Obstruction , Humans , Female , Middle Aged , Male , Reproducibility of Results , Retrospective Studies , Intestinal Obstruction/diagnostic imaging , Intestinal Obstruction/surgery , Necrosis/diagnostic imaging , Tomography, X-Ray Computed
9.
Mol Carcinog ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150096

ABSTRACT

C1R has been identified to have a distinct function in cutaneous squamous cell carcinoma that goes beyond its role in the complement system. However, it is currently unknown whether C1R is involved in the progression of hepatocellular carcinoma (HCC). HCC tissues were used to examine C1R expression in relation to clinical and pathological factors. Malignant characteristics of HCC cells were assessed through in vitro and in vivo experiments. The mechanism underlying the role of C1R in HCC was explored through RNA-seq, methylation-specific PCR, immuno-precipitation, and dual-luciferase reporter assays. This study found that the expression of C1R decreased as the malignancy of HCC increased and was associated with poor prognosis. C1R promoter was highly methylated through DNMT1 and DNMT3a, resulting in a decrease in C1R expression. Downregulation of C1R expression resulted in heightened malignant characteristics of HCC cells through the activation of HIF-1α-mediated glycolysis. Additionally, decreased C1R expression was found to promote xenograft tumor formation. We found that C-reactive protein (CRP) binds to C1R, and the free CRP activates the NF-κB signaling pathway, which in turn boosts the expression of HIF-1α. This increase in HIF-1α leads to higher glycolysis levels, ultimately promoting aggressive behavior in HCC. Methylation of the C1R promoter region results in the downregulation of C1R expression in HCC. C1R inhibits aggressive behavior in HCC in vitro and in vivo by inhibiting HIF-1α-regulated glycolysis. These findings indicate that C1R acts as a tumor suppressor gene during HCC progression, opening up new possibilities for innovative therapeutic approaches.

10.
J Antimicrob Chemother ; 79(7): 1606-1613, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38804142

ABSTRACT

BACKGROUND: The efficacy of current drugs against hookworms at a single dose is highly variable across regions, age groups and infection intensity. Extensive and repeated use of these drugs also leads to potential drug resistance. Therefore, novel drugs are required for sustained disease control. OBJECTIVES: Novel aromatic heterocycle substituted aminamidine derivatives (AADs) were synthesized based on tribendimine (TBD), and their in vivo potency against Necator americanus was tested. METHODS: The efficacy of the AADs was tested in male hamsters. Oral and IV pharmacokinetic parameters were determined in male Sprague-Dawley rats. The proteomic profiles of N. americanus samples treated with AADs were compared using tandem mass tag-based quantitative proteomic analyses. RESULTS: Most AADs exhibited better anthelmintic activity than TBD at a single oral dose. Compound 3c exhibited improved solubility (>50×), and the curative dose was as low as 25 mg/kg. Similar to TBD, 3c was rapidly metabolized after oral administration and transformed into p-(1-dimethylamino ethylimino)aniline (dADT), an active metabolite against intestinal nematodes. dADT from 3c had better pharmacokinetic profiles than that from TBD and achieved an oral bioavailability of 99.5%. Compound 3c possessed rapid anthelmintic activity, clearing all worms within 24 h after an oral dose of 50 mg/kg. Quantitative proteomic analysis indicated that it might be related to ATP metabolism and cuticle protein synthesis. CONCLUSIONS: Compound 3c is a novel and promising compound against N. americanus in vivo.


Subject(s)
Anthelmintics , Necator americanus , Rats, Sprague-Dawley , Animals , Male , Anthelmintics/pharmacology , Anthelmintics/pharmacokinetics , Necator americanus/drug effects , Amidines/pharmacology , Amidines/pharmacokinetics , Administration, Oral , Cricetinae , Rats , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/pharmacokinetics , Heterocyclic Compounds/chemistry , Proteomics
11.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36094083

ABSTRACT

Short open reading frames (sORFs) refer to the small nucleic fragments no longer than 303 nt in length that probably encode small peptides. To date, translatable sORFs have been found in both untranslated regions of messenger ribonucleic acids (RNAs; mRNAs) and long non-coding RNAs (lncRNAs), playing vital roles in a myriad of biological processes. As not all sORFs are translated or essentially translatable, it is important to develop a highly accurate computational tool for characterizing the coding potential of sORFs, thereby facilitating discovery of novel functional peptides. In light of this, we designed a series of ensemble models by integrating Efficient-CapsNet and LightGBM, collectively termed csORF-finder, to differentiate the coding sORFs (csORFs) from non-coding sORFs in Homo sapiens, Mus musculus and Drosophila melanogaster, respectively. To improve the performance of csORF-finder, we introduced a novel feature encoding scheme named trinucleotide deviation from expected mean (TDE) and computed all types of in-frame sequence-based features, such as i-framed-3mer, i-framed-CKSNAP and i-framed-TDE. Benchmarking results showed that these features could significantly boost the performance compared to the original 3-mer, CKSNAP and TDE features. Our performance comparisons showed that csORF-finder achieved a superior performance than the state-of-the-art methods for csORF prediction on multi-species and non-ATG initiation independent test datasets. Furthermore, we applied csORF-finder to screen the lncRNA datasets for identifying potential csORFs. The resulting data serve as an important computational repository for further experimental validation. We hope that csORF-finder can be exploited as a powerful platform for high-throughput identification of csORFs and functional characterization of these csORFs encoded peptides.


Subject(s)
Open Reading Frames , RNA, Long Noncoding , Animals , Mice , Drosophila melanogaster/genetics , Machine Learning , Peptides/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Humans
12.
Opt Express ; 32(1): 313-324, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175058

ABSTRACT

Magnetic-free nonreciprocal optical devices have attracted great attention in recent years. Here, we investigated the magnetic-free polarization rotation of light in an atom vapor cell. Two mechanisms of magnetic-free nonreciprocity have been realized in ensembles of hot atoms, including electromagnetically induced transparency and optically-induced magnetization. For a linearly polarized input probe light, a rotation angle up to 86.4° has been realized with external control and pump laser powers of 10 mW and is mainly attributed to the optically-induced magnetization effect. Our demonstration offers a new approach to realize nonreciprocal devices, which can be applied to solid-state atom ensembles and may be useful in photonic integrated circuits.

13.
Cardiovasc Diabetol ; 23(1): 45, 2024 01 28.
Article in English | MEDLINE | ID: mdl-38282013

ABSTRACT

BACKGROUND: This study used a bidirectional 2-sample Mendelian randomization study to investigate the potential causal links between mtDNA copy number and cardiometabolic disease (obesity, hypertension, hyperlipidaemia, type 2 diabetes [T2DM], coronary artery disease [CAD], stroke, ischemic stroke, and heart failure). METHODS: Genetic associations with mtDNA copy number were obtained from a genome-wide association study (GWAS) summary statistics from the UK biobank (n = 395,718) and cardio-metabolic disease were from largest available GWAS summary statistics. Inverse variance weighting (IVW) was conducted, with weighted median, MR-Egger, and MR-PRESSO as sensitivity analyses. We repeated this in the opposite direction using instruments for cardio-metabolic disease. RESULTS: Genetically predicted mtDNA copy number was not associated with risk of obesity (P = 0.148), hypertension (P = 0.515), dyslipidemia (P = 0.684), T2DM (P = 0.631), CAD (P = 0.199), stroke (P = 0.314), ischemic stroke (P = 0.633), and heart failure (P = 0.708). Regarding the reverse directions, we only found that genetically predicted dyslipidemia was associated with decreased levels of mtDNA copy number in the IVW analysis (ß= - 0.060, 95% CI - 0.044 to - 0.076; P = 2.416e-14) and there was suggestive of evidence for a potential causal association between CAD and mtDNA copy number (ß= - 0.021, 95% CI - 0.003 to - 0.039; P = 0.025). Sensitivity and replication analyses showed the stable findings. CONCLUSIONS: Findings of this Mendelian randomization study did not support a causal effect of mtDNA copy number in the development of cardiometabolic disease, but found dyslipidemia and CAD can lead to reduced mtDNA copy number. These findings have implications for mtDNA copy number as a biomarker of dyslipidemia and CAD in clinical practice.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Dyslipidemias , Heart Failure , Hypertension , Ischemic Stroke , Stroke , Humans , DNA, Mitochondrial/genetics , DNA Copy Number Variations , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Hypertension/diagnosis , Hypertension/epidemiology , Hypertension/genetics , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/genetics , Obesity/diagnosis , Obesity/epidemiology , Obesity/genetics , Dyslipidemias/diagnosis , Dyslipidemias/epidemiology , Dyslipidemias/genetics
14.
Phys Rev Lett ; 133(3): 036203, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39094165

ABSTRACT

Accurate description of nonadiabatic dynamics of molecules at metal surfaces involving electron transfer has been a long-standing challenge for theory. Here, we tackle this problem by first constructing high-dimensional neural network diabatic potentials including state crossings determined by constrained density functional theory, then applying mixed quantum-classical surface hopping simulations to evolve coupled electron-nuclear motion. Our approach accurately describes the nonadiabatic effects in CO scattering from Au(111) without empirical parameters and yields results agreeing well with experiments under various conditions for this benchmark system. We find that both adiabatic and nonadiabatic energy loss channels have important contributions to the vibrational relaxation of highly vibrationally excited CO(v_{i}=17), whereas relaxation of low vibrationally excited states of CO(v_{i}=2) is weak and dominated by nonadiabatic energy loss. The presented approach paves the way for accurate first-principles simulations of electron transfer mediated nonadiabatic dynamics at metal surfaces.

15.
Chemistry ; 30(34): e202401006, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38625163

ABSTRACT

Direct determination of the equilibrium adsorption and spectroscopic observation of adsorbent-adsorbate interaction is crucial to evaluate the olefin/paraffin separation performance of porous adsorbents. However, the experimental characterization of competitive adsorption of various adsorbates at atomic-molecular level in the purification of multicomponent gas mixtures is challenging and rarely conducted. Herein, solid-state NMR spectroscopy is employed to examine the effect of co-adsorbed guest adsorbates on the separation of ethylene/ethane mixtures on Mg-MOF-74, Zn-MOF-74 and UTSA-74. 1H MAS NMR facilitates the determination of equilibrium uptake and adsorption selectivity of ethylene/ethane in ternary mixtures. The co-adsorption of H2O and CO2 significantly leads to the degradation of ethylene uptake and ethylene/ethane selectivity. The detailed host-guest and guest-guest interactions are unraveled by 2D 1H-1H spin diffusion homo-nuclear correlation and static 25Mg NMR experiments. The experimental results verify H2O coordinated on open metal sites can supply a new adsorption site for ethylene and ethane. The effects of guest adsorbates on the adsorption capacity and adsorption selectivity of ethylene/ethane mixtures are in the following order: H2O>CO2>O2. This work provides a direct approach for exploring the equilibrium adsorption and detailed separation mechanism of multicomponent gas mixtures using MOFs adsorbents.

16.
Anesthesiology ; 140(3): 538-557, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37651459

ABSTRACT

BACKGROUND: Memory deficits are a common comorbid disorder in patients suffering from neuropathic pain. The mechanisms underlying the comorbidities remain elusive. The hypothesis of this study was that impaired lactate release from dysfunctional astrocytes in dorsal hippocampal CA1 contributed to memory deficits. METHODS: A spared nerve injury model was established to induce both pain and memory deficits in rats and mice of both sexes. von Frey tests, novel object recognition, and conditioned place preference tests were applied to evaluate the behaviors. Whole-cell recording, fiber photometry, Western blotting, and immunohistochemistry combined with intracranial injections were used to explore the underlying mechanisms. RESULTS: Animals with spared sciatic nerve injury that had displayed nociception sensitization or memory deficit comorbidities demonstrated a reduction in the intrinsic excitability of pyramidal neurons, accompanied by reduced Ca2+ activation in astrocytes (ΔF/F, sham: 6 ± 2%; comorbidity: 2 ± 0.4%) and a decrease in the expression of glial fibrillary acidic protein and lactate levels in the dorsal CA1. Exogenous lactate supply or increasing endogenous lactate release by chemogenetic activation of astrocytes alleviated this comorbidity by enhancing the cell excitability (129 ± 4 vs. 88 ± 10 for 3.5 mM lactate) and potentiating N-methyl-d-aspartate receptor-mediated excitatory postsynaptic potentials of pyramidal neurons. In contrast, inhibition of lactate synthesis, blocking lactate transporters, or chemogenetic inhibition of astrocytes resulted in comorbidity-like behaviors in naive animals. Notably, ß2-adrenergic receptors in astrocytes but not neurons were downregulated in dorsal CA1 after spared nerve injury. Microinjection of a ß2 receptor agonist into dorsal CA1 or activation of the noradrenergic projections onto the hippocampus from the locus coeruleus alleviated the comorbidity, possibly by increasing lactate release. CONCLUSIONS: Impaired lactate release from dysfunctional astrocytes, which could be rescued by activation of the locus coeruleus, led to nociception and memory deficits after peripheral nerve injury.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Humans , Male , Female , Rats , Mice , Animals , Rodentia , Lactic Acid , Astrocytes , Nociception , Neuralgia/metabolism , Memory Disorders/metabolism , Peripheral Nerve Injuries/metabolism , Comorbidity
17.
Pharmacol Res ; 202: 107145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492829

ABSTRACT

In many neurodegenerative disorders, such as Alzheimer's disease (AD), glutamate-mediated neuronal excitotoxicity is considered the basis for cognitive impairment. The mRNA and protein expression of SERPINA4(Kallistatin) are higher in patients with AD. However, whether Kallistatin plays a regulatory role in glutamate-glutamine cycle homeostasis remains unclear. In this study, we identified impaired cognitive function in Kallistatin transgenic (KAL-TG) mice. Baseline glutamate levels were elevated and miniature excitatory postsynaptic current (mEPSC) frequency was increased in the hippocampus, suggesting the impairment of glutamate homeostasis in KAL-TG mice. Mechanistically, we demonstrated that Kallistatin promoted lysine acetylation and ubiquitination of glutamine synthetase (GS) and facilitated its degradation via the proteasome pathway, thereby downregulating GS. Fenofibrate improved cognitive memory in KAL-TG mice by downregulating serum Kallistatin. Collectively, our study findings provide insights the mechanism by which Kallistatin regulates cognitive impairment, and suggest the potential of fenofibrate to prevente and treat of AD patients with high levels of Kallistatin.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Fenofibrate , Serpins , Humans , Mice , Animals , Glutamate-Ammonia Ligase/metabolism , Alzheimer Disease/metabolism , Mice, Transgenic , Glutamic Acid/metabolism , Cognitive Dysfunction/drug therapy , Cognition
18.
Faraday Discuss ; 251(0): 457-470, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-38757528

ABSTRACT

In the form of direct abstraction of a surface adsorbate by a gaseous projectile, the Eley-Rideal (ER) reaction at the gas-surface interface manifests interesting dynamics. Unfortunately, high-dimensional quantum dynamical (QD) studies for ER reactions remain very challenging, which demands a large configuration space and the coordinate transformation of wavefunctions. Here, we report the first six-dimensional (6D) fully coupled quantum scattering method for studying the ER reaction between gas phase H(D) atoms and adsorbed D(H) atoms on a rigid Cu(111) surface. Reaction probabilities and product rovibrational state distributions obtained by this 6D model are found to be quite different from those obtained by reduced-dimensional QD models, demonstrating the high-dimensional nature of the ER reaction. Using two distinct potential energy surfaces (PESs), we further discuss the influence of the PES on the calculated product vibrational and rotational state distributions, in comparison with experimental results. The lateral corrugation and the exothermicity of the PES are found to play a critical role in controlling the energy disposal in the ER reaction.

19.
EMBO Rep ; 23(10): e54543, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35993189

ABSTRACT

Regulation of mRNA translation is essential for brain development and function. Translation elongation factor eEF2 acts as a molecular hub orchestrating various synaptic signals to protein synthesis control and participates in hippocampus-dependent cognitive functions. However, whether eEF2 regulates other behaviors in different brain regions has been unknown. Here, we construct a line of Eef2 heterozygous (HET) mice, which show a reduction in eEF2 and protein synthesis mainly in excitatory neurons of the prefrontal cortex. The mice also show lower spine density, reduced excitability, and AMPAR-mediated synaptic transmission in pyramidal neurons of the medial prefrontal cortex (mPFC). While HET mice exhibit normal learning and memory, they show defective social behavior and elevated anxiety. Knockdown of Eef2 in excitatory neurons of the mPFC specifically is sufficient to impair social novelty preference. Either chemogenetic activation of excitatory neurons in the mPFC or mPFC local infusion of the AMPAR potentiator PF-4778574 corrects the social novelty deficit of HET mice. Collectively, we identify a novel role for eEF2 in promoting prefrontal AMPAR-mediated synaptic transmission underlying social novelty behavior.


Subject(s)
Peptide Elongation Factor 2/metabolism , Prefrontal Cortex , Synaptic Transmission , Animals , Excitatory Postsynaptic Potentials/physiology , Mice , Peptide Elongation Factors/metabolism , Prefrontal Cortex/physiology , Social Behavior , Synaptic Transmission/physiology
20.
Scand J Gastroenterol ; 59(2): 142-149, 2024.
Article in English | MEDLINE | ID: mdl-37837320

ABSTRACT

Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammatory diseases with unknown etiology. Gap junctions composed of connexins (Cxs) have been recently validated as an important factor in the development of IBD. Under IBD-induced inflammatory response in the gut, gap junctions connect multiple signaling pathways involved in the interaction between inflammatory cells with other intestinal cells, which altogether mediate the development of IBD. This paper is a narrative review aiming to comprehensively elucidate the biological function of connexins, especially the ubiquitously and predominantly expressed Cx43, in the pathogenesis of IBD.


Subject(s)
Connexins , Inflammatory Bowel Diseases , Humans , Connexins/metabolism , Gap Junctions/metabolism , Signal Transduction , Inflammatory Bowel Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL