Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Amino Acids ; 50(11): 1539-1548, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30073607

ABSTRACT

Gout and hyperuricemia are highly prevalent metabolic diseases caused by high level of uric acid. Amino acids (AAs) involve in various biochemical processes including the biosynthesis of uric acid. However, the role of AAs in discriminating gout from hyperuricemia remains unknown. Here, we report that the plasma AAs profile can distinguish acute gout (AG) from asymptomatic hyperuricemia (AHU). We established an LC-MS/MS-based method to measure the plasma AAs without derivatization for the AG and AHU patients, and healthy controls. We found that the plasma profiling of AAs separated the AG patients from AHU patients and controls visually in both principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA) models. In addition, L-isoleucine, L-lysine, and L-alanine were suggested as the key mediators to distinguish the AG patients from AHU and control groups based on the S-plot analysis and variable importance in the projection values in the OPLS-DA models, volcano plot, and the receiver operating characteristic curves. In addition, the saturation of monosodium urate in the AA solutions at physiologically mimic status supported the changes in plasma AAs facilitating the precipitation of monosodium urate. This study suggests that L-isoleucine, L-lysine, and L-alanine could be the potential markers to distinguish the AG from AHU when the patients have similar blood levels of uric acid, providing new strategies for the prevention, treatment, and management of acute gout.


Subject(s)
Amino Acids/blood , Gout/blood , Hyperuricemia/blood , Acute Disease , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Models, Biological
2.
Parasit Vectors ; 13(1): 314, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32552779

ABSTRACT

BACKGROUND: Malaria caused by Plasmodium spp. is still a major threat to public health globally. The various approaches to developing new antimalarial agents rely on the understanding of the complex regulatory mechanisms of dynamic gene expression in the life-cycle of these malaria parasites. The nuclear members of the evolutionarily conserved actin-related protein nuclear (ARP) superfamily are the major components of nucleosome remodelling complexes. In the human malaria parasite Plasmodium falciparum, bioinformatics analysis has predicted three ARP orthologues: PfArp1, PfArp4 and PfArp6. However, little is known about the biological functions of putative PfArp4. In this study, we aimed to investigate the function and the underlying mechanisms of PfArp4 gene regulation. METHODS: A conditional gene knockdown approach was adopted by incorporating the glucosamine-inducible glmS ribozyme sequence into the 3' UTR of the PfArp4 and PfArp6 genes. The transgenic parasites PfArp4-Ty1-Ribo, PfArp6-Ty1-Ribo and pL6-PfArp4-Ty1::PfArp6-HA were generated by the CRISPR-Cas9 technique. The knockdown effect in the transgenic parasite was measured by growth curve assay and western blot (WB) analysis. The direct interaction between PfArp4 and PfArp6 was validated by co-IFA and co-IP assays. The euchromatic gene expression mediated through H2A.Z (histone H2A variant) deposition and H3K9ac modification at promoters and regulated by PfArp4, was determined by RNA-seq and ChIP-seq. RESULTS: The inducible knockdown of PfArp4 inhibited blood-stage development of P. falciparum. PfArp4 and PfArp6 were colocalized in the nucleus of P. falciparum parasites. PfArp4 gene knockdown altered the global transcriptome. PfArp4 protein colocalized with the histone variant H2A.Z and euchromatic marker H3K9ac in intergenic regions. The inducible downregulation of PfArp4 resulted in the depletion of H2A.Z and lower H3K9ac levels at the upstream regions of eukaryotic genes, thereby repressing the transcriptional abundance of H2A.Z-dependent genes. CONCLUSIONS: Our findings suggest that PfArp4 regulates the cell cycle by controlling H2A.Z deposition and affecting centromere function, contributing to the understanding the complex epigenetic regulation of gene expression and the development of P. falciparum.


Subject(s)
Histones/metabolism , Life Cycle Stages/genetics , Microfilament Proteins/metabolism , Plasmodium falciparum/physiology , Protozoan Proteins/metabolism , Cell Cycle/genetics , Cell Nucleus/metabolism , Centromere/genetics , Centromere/metabolism , DNA, Intergenic , Epigenesis, Genetic , Euchromatin/genetics , Euchromatin/metabolism , Gene Expression Regulation, Developmental , Histones/genetics , Microfilament Proteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Promoter Regions, Genetic , Protein Binding , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL