Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.255
Filter
Add more filters

Publication year range
1.
Cell ; 177(2): 370-383.e15, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30905475

ABSTRACT

Contractile injection systems (CISs) are cell-puncturing nanodevices that share ancestry with contractile tail bacteriophages. Photorhabdus virulence cassette (PVC) represents one group of extracellular CISs that are present in both bacteria and archaea. Here, we report the cryo-EM structure of an intact PVC from P. asymbiotica. This over 10-MDa device resembles a simplified T4 phage tail, containing a hexagonal baseplate complex with six fibers and a capped 117-nanometer sheath-tube trunk. One distinct feature of the PVC is the presence of three variants for both tube and sheath proteins, indicating a functional specialization of them during evolution. The terminal hexameric cap docks onto the topmost layer of the inner tube and locks the outer sheath in pre-contraction state with six stretching arms. Our results on the PVC provide a framework for understanding the general mechanism of widespread CISs and pave the way for using them as delivery tools in biological or therapeutic applications.


Subject(s)
Photorhabdus/chemistry , Photorhabdus/ultrastructure , Bacteriophage T4/chemistry , Cell Membrane/chemistry , Cryoelectron Microscopy/methods , Models, Molecular , Photorhabdus/metabolism , Protein Conformation , Type VI Secretion Systems/metabolism
2.
Am J Hum Genet ; 110(4): 625-637, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36924774

ABSTRACT

Genome-wide association studies (GWASs) have repeatedly reported multiple non-coding single-nucleotide polymorphisms (SNPs) at 2p14 associated with rheumatoid arthritis (RA), but their functional roles in the pathological mechanisms of RA remain to be explored. In this study, we integrated a series of bioinformatics and functional experiments and identified three intronic RA SNPs (rs1876518, rs268131, and rs2576923) within active enhancers that can regulate the expression of SPRED2 directly. At the same time, SPRED2 and ACTR2 influence each other as a positive feedback signal amplifier to strengthen the protective role in RA by inhibiting the migration and invasion of rheumatoid fibroblast-like synoviocytes (FLSs). In particular, the transcription factor CEBPB preferentially binds to the rs1876518-T allele to increase the expression of SPRED2 in FLSs. Our findings decipher the molecular mechanisms behind the GWAS signals at 2p14 for RA and emphasize SPRED2 as a potential candidate gene for RA, providing a potential target and direction for precise treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cell Proliferation/genetics , Cells, Cultured , Chromosomes , Fibroblasts/metabolism , Gene Expression Regulation , Genome-Wide Association Study , Repressor Proteins/genetics , Synoviocytes/metabolism , Synoviocytes/pathology , Actin-Related Protein 2/metabolism
3.
Am J Hum Genet ; 110(8): 1266-1288, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37506691

ABSTRACT

Most of the single-nucleotide polymorphisms (SNPs) associated with insulin resistance (IR)-relevant phenotypes by genome-wide association studies (GWASs) are located in noncoding regions, complicating their functional interpretation. Here, we utilized an adapted STARR-seq to evaluate the regulatory activities of 5,987 noncoding SNPs associated with IR-relevant phenotypes. We identified 876 SNPs with biased allelic enhancer activity effects (baaSNPs) across 133 loci in three IR-relevant cell lines (HepG2, preadipocyte, and A673), which showed pervasive cell specificity and significant enrichment for cell-specific open chromatin regions or enhancer-indicative markers (H3K4me1, H3K27ac). Further functional characterization suggested several transcription factors (TFs) with preferential allelic binding to baaSNPs. We also incorporated multi-omics data to prioritize 102 candidate regulatory target genes for baaSNPs and revealed prevalent long-range regulatory effects and cell-specific IR-relevant biological functional enrichment on them. Specifically, we experimentally verified the distal regulatory mechanism at IRS1 locus, in which rs952227-A reinforces IRS1 expression by long-range chromatin interaction and preferential binding to the transcription factor HOXC6 to augment the enhancer activity. Finally, based on our STARR-seq screening data, we predicted the enhancer activity of 227,343 noncoding SNPs associated with IR-relevant phenotypes (fasting insulin adjusted for BMI, HDL cholesterol, and triglycerides) from the largest available GWAS summary statistics. We further provided an open resource (http://www.bigc.online/fnSNP-IR) for better understanding genetic regulatory mechanisms of IR-relevant phenotypes.


Subject(s)
Insulin Resistance , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , Genome-Wide Association Study , Insulin Resistance/genetics , Transcription Factors/genetics , Chromatin/genetics , Phenotype , Enhancer Elements, Genetic/genetics
4.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38385873

ABSTRACT

Lysine lactylation (Kla) is a newly discovered posttranslational modification that is involved in important life activities, such as glycolysis-related cell function, macrophage polarization and nervous system regulation, and has received widespread attention due to the Warburg effect in tumor cells. In this work, we first design a natural language processing method to automatically extract the 3D structural features of Kla sites, avoiding potential biases caused by manually designed structural features. Then, we establish two Kla prediction frameworks, Attention-based feature fusion Kla model (ABFF-Kla) and EBFF-Kla, to integrate the sequence features and the structure features based on the attention layer and embedding layer, respectively. The results indicate that ABFF-Kla and Embedding-based feature fusion Kla model (EBFF-Kla), which fuse features from protein sequences and spatial structures, have better predictive performance than that of models that use only sequence features. Our work provides an approach for the automatic extraction of protein structural features, as well as a flexible framework for Kla prediction. The source code and the training data of the ABFF-Kla and the EBFF-Kla are publicly deposited at: https://github.com/ispotato/Lactylation_model.


Subject(s)
Lysine , Natural Language Processing , Amino Acid Sequence , Protein Domains , Protein Processing, Post-Translational
5.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-39007599

ABSTRACT

The interaction between T-cell receptors (TCRs) and peptides (epitopes) presented by major histocompatibility complex molecules (MHC) is fundamental to the immune response. Accurate prediction of TCR-epitope interactions is crucial for advancing the understanding of various diseases and their prevention and treatment. Existing methods primarily rely on sequence-based approaches, overlooking the inherent topology structure of TCR-epitope interaction networks. In this study, we present $GTE$, a novel heterogeneous Graph neural network model based on inductive learning to capture the topological structure between TCRs and Epitopes. Furthermore, we address the challenge of constructing negative samples within the graph by proposing a dynamic edge update strategy, enhancing model learning with the nonbinding TCR-epitope pairs. Additionally, to overcome data imbalance, we adapt the Deep AUC Maximization strategy to the graph domain. Extensive experiments are conducted on four public datasets to demonstrate the superiority of exploring underlying topological structures in predicting TCR-epitope interactions, illustrating the benefits of delving into complex molecular networks. The implementation code and data are available at https://github.com/uta-smile/GTE.


Subject(s)
Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Humans , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Neural Networks, Computer , Computational Biology/methods , Protein Binding , Epitopes/chemistry , Epitopes/immunology , Algorithms , Software
6.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38920343

ABSTRACT

While significant strides have been made in predicting neoepitopes that trigger autologous CD4+ T cell responses, accurately identifying the antigen presentation by human leukocyte antigen (HLA) class II molecules remains a challenge. This identification is critical for developing vaccines and cancer immunotherapies. Current prediction methods are limited, primarily due to a lack of high-quality training epitope datasets and algorithmic constraints. To predict the exogenous HLA class II-restricted peptides across most of the human population, we utilized the mass spectrometry data to profile >223 000 eluted ligands over HLA-DR, -DQ, and -DP alleles. Here, by integrating these data with peptide processing and gene expression, we introduce HLAIImaster, an attention-based deep learning framework with adaptive domain knowledge for predicting neoepitope immunogenicity. Leveraging diverse biological characteristics and our enhanced deep learning framework, HLAIImaster is significantly improved against existing tools in terms of positive predictive value across various neoantigen studies. Robust domain knowledge learning accurately identifies neoepitope immunogenicity, bridging the gap between neoantigen biology and the clinical setting and paving the way for future neoantigen-based therapies to provide greater clinical benefit. In summary, we present a comprehensive exploitation of the immunogenic neoepitope repertoire of cancers, facilitating the effective development of "just-in-time" personalized vaccines.


Subject(s)
Deep Learning , Histocompatibility Antigens Class II , Humans , Histocompatibility Antigens Class II/immunology , Epitopes/immunology , Computational Biology/methods , Epitopes, T-Lymphocyte/immunology
7.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38632084

ABSTRACT

MOTIVATION: It is difficult to generate new molecules with desirable bioactivity through ligand-based de novo drug design, and receptor-based de novo drug design is constrained by disease target information availability. The combination of artificial intelligence and phenotype-based de novo drug design can generate new bioactive molecules, independent from disease target information. Gene expression profiles can be used to characterize biological phenotypes. The Transformer model can be utilized to capture the associations between gene expression profiles and molecular structures due to its remarkable ability in processing contextual information. RESULTS: We propose TransGEM (Transformer-based model from gene expression to molecules), which is a phenotype-based de novo drug design model. A specialized gene expression encoder is used to embed gene expression difference values between diseased cell lines and their corresponding normal tissue cells into TransGEM model. The results demonstrate that the TransGEM model can generate molecules with desirable evaluation metrics and property distributions. Case studies illustrate that TransGEM model can generate structurally novel molecules with good binding affinity to disease target proteins. The majority of genes with high attention scores obtained from TransGEM model are associated with the onset of the disease, indicating the potential of these genes as disease targets. Therefore, this study provides a new paradigm for de novo drug design, and it will promote phenotype-based drug discovery. AVAILABILITY AND IMPLEMENTATION: The code is available at https://github.com/hzauzqy/TransGEM.


Subject(s)
Drug Design , Humans , Phenotype , Gene Expression Profiling/methods , Artificial Intelligence , Algorithms , Gene Expression , Ligands
8.
Chem Rev ; 123(15): 9204-9264, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37419504

ABSTRACT

Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.

9.
Chem Rev ; 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36649301

ABSTRACT

Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.

10.
Nucleic Acids Res ; 51(11): 5831-5846, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37125639

ABSTRACT

Accumulating evidence suggests that posttranscriptional control of gene expression, including RNA splicing, transport, modification, translation and degradation, primarily relies on RNA binding proteins (RBPs). However, the functions of many RBPs remain understudied. Here, we characterized the function of a novel RBP, Proline-Rich Coiled-coil 2B (PRRC2B). Through photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation and sequencing (PAR-CLIP-seq), we identified transcriptome-wide CU- or GA-rich PRRC2B binding sites near the translation initiation codon on a specific cohort of mRNAs in HEK293T cells. These mRNAs, including oncogenes and cell cycle regulators such as CCND2 (cyclin D2), exhibited decreased translation upon PRRC2B knockdown as revealed by polysome-associated RNA-seq, resulting in reduced G1/S phase transition and cell proliferation. Antisense oligonucleotides blocking PRRC2B interactions with CCND2 mRNA decreased its translation, thus inhibiting G1/S transition and cell proliferation. Mechanistically, PRRC2B interactome analysis revealed RNA-independent interactions with eukaryotic translation initiation factors 3 (eIF3) and 4G2 (eIF4G2). The interaction with translation initiation factors is essential for PRRC2B function since the eIF3/eIF4G2-interacting defective mutant, unlike wild-type PRRC2B, failed to rescue the translation deficiency or cell proliferation inhibition caused by PRRC2B knockdown. Altogether, our findings reveal that PRRC2B is essential for efficiently translating specific proteins required for cell cycle progression and cell proliferation.


Subject(s)
Cell Cycle , RNA-Binding Proteins , Humans , Cell Division , Eukaryotic Initiation Factor-3 , HEK293 Cells , Protein Binding , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism
11.
Nano Lett ; 24(1): 245-253, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38157424

ABSTRACT

Mechanically strong and damage-tolerant corrosion protection layers are of great technological importance. However, corrosion protection layers with high modulus (>1.5 GPa) and tensile strength (>100 MPa) are rare. Here, we report that a 130 µm thick densified wood veneer with a Young's modulus of 34.49 GPa and tensile strength of 693 MPa exhibits both low diffusivity for metal ions and the ability of self-recovery from mechanical damage. Densified wood veneer is employed as an intermediate layer to render a mechanically strong corrosion protection structure, referred to as "wood corrosion protection structure", or WCPS. The corrosion rate of low-carbon steel protected by WCPS is reduced by 2 orders of magnitude than state-of-the-art corrosion protection layers during a salt spray test. The introduction of engineered wood veneer as a thin and mechanically strong material points to new directions of sustainable corrosion protection design.

12.
Proteomics ; 24(1-2): e2300185, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37847886

ABSTRACT

Lactylation, as a novel posttranslational modification, is essential for studying the functions and regulation of proteins in physiological and pathological processes, as well as for gaining in-depth knowledge on the occurrence and development of many diseases, including tumors. However, few studies have examined the protein lactylation of one whole organism. Thus, we studied the lactylation of global proteins in Caenorhabditis elegans to obtain an in vivo lactylome. Using an MS-based platform, we identified 1836 Class I (localization probabilities > 0.75) lactylated sites in 487 proteins. Bioinformatics analysis showed that lactylated proteins were mainly located in the cytoplasm and involved in the tricarboxylic acid cycle (TCA cycle) and other metabolic pathways. Then, we evaluated the conservation of lactylation in different organisms. In total, 41 C. elegans proteins were lactylated and homologous to lactylated proteins in humans and rats. Moreover, lactylation on H4K80 was conserved in three species. An additional 238 lactylated proteins were identified in C. elegans for the first time. This study establishes the first lactylome database in C. elegans and provides a basis for studying the role of lactylation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Humans , Animals , Rats , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Citric Acid Cycle , Metabolic Networks and Pathways , Proteome/metabolism
13.
Carcinogenesis ; 45(6): 409-423, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38366384

ABSTRACT

In recent decades, considerable evidence has emerged indicating the involvement of tRNA-derived fragments (tRFs) in cancer progression through various mechanisms. However, the biological effects and mechanisms of tRFs in lung adenocarcinoma (LUAD) remain unclear. In this study, we screen out tRF-29-79, a 5'-tRF derived from tRNAGlyGCC, through profiling the tRF expressions in three pairs of LUAD tissues. We show that tRF-29-79 is downregulated in LUAD and downregulation of tRF-29-79 is associated with poorer prognosis. In vivo and in vitro assay reveal that tRF-29-79 inhibits proliferation, migration and invasion of LUAD cells. Mechanistically, we discovered that tRF-29-79 interacts with the RNA-binding protein PTBP1 and facilitates the transportation of PTBP1 from nucleus to cytoplasm, which regulates alternative splicing in the 3' untranslated region (UTR) of SLC1A5 pre-mRNA. Given that SLC1A5 is a core transporter of glutamine, we proved that tRF-29-79 mediate glutamine metabolism of LUAD through affecting the stability of SLC1A5 mRNA, thus exerts its anticancer function. In summary, our findings uncover the novel mechanism that tRF-29-79 participates in glutamine metabolism through interacting with PTBP1 and regulating alternative splicing in the 3' UTR of SLC1A5 pre-mRNA.


Subject(s)
Adenocarcinoma of Lung , Amino Acid Transport System ASC , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoproteins , Lung Neoplasms , Polypyrimidine Tract-Binding Protein , Humans , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Animals , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Cell Movement , Prognosis , Cell Line, Tumor , Alternative Splicing , Female , Glutamine/metabolism , Male
14.
Ecol Lett ; 27(1): e14364, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225803

ABSTRACT

Plant-soil feedback (PSF) is an important mechanism determining plant community dynamics and structure. Understanding the geographic patterns and drivers of PSF is essential for understanding the mechanisms underlying geographic plant diversity patterns. We compiled a large dataset containing 5969 observations of PSF from 202 studies to demonstrate the global patterns and drivers of PSF for woody and non-woody species. Overall, PSF was negative on average and was influenced by plant attributes and environmental settings. Woody species PSFs did not vary with latitude, but non-woody PSFs were more negative at higher latitudes. PSF was consistently more positive with increasing aridity for both woody and non-woody species, likely due to increased mutualistic microbes relative to soil-borne pathogens. These findings were consistent between field and greenhouse experiments, suggesting that PSF variation can be driven by soil legacies from climates. Our findings call for caution to use PSF as an explanation of the latitudinal diversity gradient and highlight that aridity can influence plant community dynamics and structure across broad scales through mediating plant-soil microbe interactions.


Subject(s)
Plants , Soil , Soil Microbiology , Symbiosis , Feedback
15.
J Am Chem Soc ; 146(28): 19286-19294, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38956888

ABSTRACT

As one of the most powerful trifluoromethylation reagents, (trifluoromethyl)trimethylsilane (TMSCF3) has been widely used for the synthesis of fluorine-containing molecules. However, to the best of our knowledge, the simultaneous incorporation of both TMS- and CF3- groups of this reagent onto the same carbon of the products has not been realized. Herein, we report an unprecedented SmI2/Sm promoted deoxygenative difunctionalization of amides with TMSCF3, in which both silyl and trifluoromethyl groups are incorporated into the final product, yielding α-silyl-α-trifluoromethyl amines with high efficiency. Notably, the silyl group could be further transformed into other functional groups, providing a new method for the synthesis of α-quaternary α-CF3-amines.

16.
Mol Cancer ; 23(1): 122, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844984

ABSTRACT

Metastasis remains the principal cause of cancer-related lethality despite advancements in cancer treatment. Dysfunctional epigenetic alterations are crucial in the metastatic cascade. Among these, super-enhancers (SEs), emerging as new epigenetic regulators, consist of large clusters of regulatory elements that drive the high-level expression of genes essential for the oncogenic process, upon which cancer cells develop a profound dependency. These SE-driven oncogenes play an important role in regulating various facets of metastasis, including the promotion of tumor proliferation in primary and distal metastatic organs, facilitating cellular migration and invasion into the vasculature, triggering epithelial-mesenchymal transition, enhancing cancer stem cell-like properties, circumventing immune detection, and adapting to the heterogeneity of metastatic niches. This heavy reliance on SE-mediated transcription delineates a vulnerable target for therapeutic intervention in cancer cells. In this article, we review current insights into the characteristics, identification methodologies, formation, and activation mechanisms of SEs. We also elaborate the oncogenic roles and regulatory functions of SEs in the context of cancer metastasis. Ultimately, we discuss the potential of SEs as novel therapeutic targets and their implications in clinical oncology, offering insights into future directions for innovative cancer treatment strategies.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Animals , Epigenesis, Genetic , Molecular Targeted Therapy , Epithelial-Mesenchymal Transition
17.
Cancer Sci ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806289

ABSTRACT

Because of the common physical condition, reduced organ function, and comorbidities, elderly patients with nasopharyngeal carcinoma (NPC) are often underrepresented in clinical trials. The optimal treatment of elderly patients with locally advanced NPC remains unclear. The purpose of this study was to evaluate the efficacy of concurrent nimotuzumab combined with intensity-modulated radiotherapy (IMRT) in elderly patients with locally advanced NPC. We conducted a single-arm, phase II trial for elderly patients with stage III-IVA NPC (according to UICC-American Joint Committee on Cancer TNM classification, 8th edition). All patients received concurrent nimotuzumab (200 mg/week, 1 week prior to IMRT) combined with IMRT. The primary end-point was complete response (CR) rate. The secondary end-points were survival, safety, and geriatric assessment. Between March 13, 2017 and November 12, 2018, 30 patients were enrolled. In total, 20 (66.7%) patients achieved CR, and objective response was observed in 30 (100.0%) patients 1 month after radiotherapy. The median follow-up time was 56.05 months (25th-75th percentile, 53.45-64.56 months). The 5-year locoregional relapse-free survival, distant metastasis-free survival, cancer-specific survival, disease-free survival, and overall survival were 89.4%, 86.4%, 85.9%, 76.5%, and 78.8%, respectively. Grade 3 mucositis occurred in 10 (33%) patients and grade 3 pneumonia in 3 (10%) patients. Concurrent nimotuzumab combined with IMRT is effective and well-tolerated for elderly patients with locally advanced NPC.

18.
Small ; 20(13): e2310038, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37963847

ABSTRACT

Superelastic aerogels with rapid response and recovery times, as well as exceptional shape recovery performance even from large deformation, are in high demand for wearable sensor applications. In this study, a novel conductive and superelastic cellulose-based aerogel is successfully developed. The aerogel incorporates networks of cellulose sub-micron fibers and carbon black (SMF/CB) nanoparticles, achieved through a combination of dual ice templating assembly and electrostatic assembly methods. The incorporation of assembled cellulose sub-micron fibers imparts remarkable superelasticity to the aerogel, enabling it to retain 94.6% of its original height even after undergoing 10 000 compression/recovery cycles. Furthermore, the electrostatically assembled CB nanoparticles contribute to exceptional electrical conductivity in the cellulose-based aerogel. This combination of electrical conductivity and superelasticity results in an impressive response time of 7.7 ms and a recovery time of 12.8 ms for the SMF/CB aerogel, surpassing many of the aerogel sensors reported in previous studies. As a proof of concept, the SMF/CB aerogel is utilized to construct a pressure sensor and a sensing array, which exhibit exceptional responsiveness to both minor and substantial human motions, indicating its significant potential for applications in human health monitoring and human-machine interaction.

19.
Small ; 20(23): e2309075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38597772

ABSTRACT

The improper use and overuse of antibiotics have led to significant burdens and detrimental effects on the environment, food supply, and human health. Herein, a magnetic solid-phase extraction program and an optical immunosensor based on bimetallic Ce/Zr-UiO 66 for the detection of antibiotics are developed. A magnetic Fe3O4@SiO2@Ce/Zr-UiO 66 metal-organic framework (MOF) is prepared to extract and enrich chloramphenicol from fish, wastewater, and urine samples, and a horseradish peroxidase (HRP)-Ce/Zr-UiO 66@bovine serum protein-chloramphenicol probe is used for the sensitive detection of chloramphenicol based on the dual-effect catalysis of Ce and HRP. In this manner, the application of Ce/Zr-UiO 66 in integrating sample pretreatment and antibiotic detection is systematically investigated and the associated mechanisms are explored. It is concluded that Ce/Zr-UiO 66 is a versatile dual-track material exhibiting high enrichment efficiency (6.37 mg g-1) and high sensitivity (limit of detection of 51.3 pg mL-1) for chloramphenicol detection and serving as a multifunctional MOF for safeguarding public health and hygiene.


Subject(s)
Anti-Bacterial Agents , Chloramphenicol , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Chloramphenicol/analysis , Animals , Humans , Silicon Dioxide/chemistry , Cerium/chemistry , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism
20.
Small ; 20(12): e2306942, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37939315

ABSTRACT

Cellulose foams are in high demand in an era of prioritizing environmental consciousness. Yet, transferring the exceptional mechanical properties of cellulose fibers into a cellulose network remains a significant challenge. To address this challenge, an innovative multiscale design is developed for producing cellulose foam with exceptional network integrity. Specifically, this design relies on a combination of physical cross-linking of the microfibrillated cellulose (MFC) networks by cellulose nanofibril (CNF) and aluminum ion (Al3+), as well as self-densification of the cellulose induced by ice-crystal templating, physical cross-linking, solvent exchange, and evaporation. The resultant cellulose foam demonstrates a low density of 40.7 mg cm-3, a high porosity of 97.3%, and a robust network with high compressive modulus of 1211.5 ± 60.6 kPa and energy absorption of 77.8 ± 1.9 kJ m-3. The introduction of CNF network and Al3+ cross-linking into foam also confers excellent wet stability and flame self-extinguish ability. Furthermore, the foam can be easily biodegraded in natural environments , re-entering the ecosystem's carbon cycle. This strategy yields a cellulose foam with a robust network and outstanding environmental durability, opening new possibilities for the advancement of high-performance foam materials.

SELECTION OF CITATIONS
SEARCH DETAIL