Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 587(7834): 448-454, 2020 11.
Article in English | MEDLINE | ID: mdl-33149306

ABSTRACT

Low concordance between studies that examine the role of microbiota in human diseases is a pervasive challenge that limits the capacity to identify causal relationships between host-associated microorganisms and pathology. The risk of obtaining false positives is exacerbated by wide interindividual heterogeneity in microbiota composition1, probably due to population-wide differences in human lifestyle and physiological variables2 that exert differential effects on the microbiota. Here we infer the greatest, generalized sources of heterogeneity in human gut microbiota profiles and also identify human lifestyle and physiological characteristics that, if not evenly matched between cases and controls, confound microbiota analyses to produce spurious microbial associations with human diseases. We identify alcohol consumption frequency and bowel movement quality as unexpectedly strong sources of gut microbiota variance that differ in distribution between healthy participants and participants with a disease and that can confound study designs. We demonstrate that for numerous prevalent, high-burden human diseases, matching cases and controls for confounding variables reduces observed differences in the microbiota and the incidence of spurious associations. On this basis, we present a list of host variables that we recommend should be captured in human microbiota studies for the purpose of matching comparison groups, which we anticipate will increase robustness and reproducibility in resolving the members of the gut microbiota that are truly associated with human disease.


Subject(s)
Confounding Factors, Epidemiologic , Data Analysis , Diet , Disease , Gastrointestinal Microbiome/physiology , Life Style , Machine Learning , Adult , Aged , Aged, 80 and over , Alcohol Drinking , Area Under Curve , Body Mass Index , Case-Control Studies , Diabetes Mellitus, Type 2 , Feces/microbiology , Female , Gastrointestinal Motility , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , ROC Curve , Residence Characteristics , Young Adult
2.
Inorg Chem ; 63(9): 4224-4232, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38364058

ABSTRACT

The cycloaddition of CO2 with epoxides driven by light irradiation is an intriguing approach to preparing cyclic carbonates. However, it remains a great challenge to achieve high photocatalytic efficiency in the absence of a cocatalyst. Herein, we explored a metal-organic-framework (MOF)-templated pyrolysis strategy to prepare uniform bromine ions/nitrogen-codoped carbon materials (Br-CN) as low-cost photocatalysts for CO2 cycloaddition. The optimal catalyst Br-CN-1-550 can be used as a photocatalyst to catalyze CO2 cycloaddition, remarkably reducing the energy consumption. As a result of its benefits of high photothermal efficiency and rich nucleophilic sites (Br ions), BN-CN-1-550 affords a 9 times higher yield of 4-(chloromethyl)-1,3-dioxolan-2-one than that of the ZIF-8-derived CN under cocatalyst-free conditions and light irradiation (300 mW·cm-2 full-spectrum irradiation, 10 h). This strategy provides a cost-effective way to obtain cyclic carbonate under cocatalyst-free conditions.

3.
Inorg Chem ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056170

ABSTRACT

The development of heterogeneous catalysts with abundant active sites is pivotal for enhancing the efficiency of photothermal CO2 conversion. Herein, we report the construction of Co2N0.67@ZIF-67 through the in situ pyrolysis of ZIF-67 under low-temperature pyrolysis conditions. During the pyrolysis process, the crystal structure of ZIF-67 is predominantly preserved concurrently with the formation of Co2N0.67 nanoparticles (NPs) within the ZIF-67 pores. The optimal catalyst Co2N0.67@ZIF-67(450,2) not only possesses high photothermal efficiency but also can efficiently activate CO2. Benefiting from these characteristics, Co2N0.67@ZIF-67(450,2) exhibited significant catalytic activity in the photocatalytic cycloaddition of CO2 and epichlorohydrin. The yield of (chloromethyl)ethylene carbonate reached 95%, which is more than 4 times higher than that of ZIF-67 under visible light irradiation (300 W·m2 Xe lamp, 3 h). This study could offer an alternative approach to enhance the photocatalytic activity of MOFs through low-temperature pyrolysis.

4.
Nature ; 551(7681): 457-463, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29088705

ABSTRACT

Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.


Subject(s)
Biodiversity , Earth, Planet , Microbiota/genetics , Animals , Archaea/genetics , Archaea/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Ecology/methods , Gene Dosage , Geographic Mapping , Humans , Plants/microbiology , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
5.
Int J Mol Sci ; 24(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37176064

ABSTRACT

Pro-inflammatory and anti-inflammatory types are the main phenotypes of the macrophage, which are commonly notified as M1 and M2, respectively. The alteration of macrophage phenotypes and the progression of inflammation are intimately associated; both phenotypes usually coexist throughout the whole inflammation stage, involving the transduction of intracellular signals and the secretion of extracellular cytokines. This paper aims to address the interaction of macrophages and surrounding cells and tissues with inflammation-related diseases and clarify the crosstalk of signal pathways relevant to the phenotypic metamorphosis of macrophages. On these bases, some novel therapeutic methods are proposed for regulating inflammation through monitoring the transition of macrophage phenotypes so as to prevent the negative effects of antibiotic drugs utilized in the long term in the clinic. This information will be quite beneficial for the diagnosis and treatment of inflammation-related diseases like pneumonia and other disorders involving macrophages.


Subject(s)
Biological Products , Macrophages , Humans , Macrophages/metabolism , Cytokines/metabolism , Phenotype , Inflammation/metabolism , Biological Products/pharmacology
6.
Biometrics ; 78(3): 1155-1167, 2022 09.
Article in English | MEDLINE | ID: mdl-33914902

ABSTRACT

Feature selection is indispensable in microbiome data analysis, but it can be particularly challenging as microbiome data sets are high dimensional, underdetermined, sparse and compositional. Great efforts have recently been made on developing new methods for feature selection that handle the above data characteristics, but almost all methods were evaluated based on performance of model predictions. However, little attention has been paid to address a fundamental question: how appropriate are those evaluation criteria? Most feature selection methods often control the model fit, but the ability to identify meaningful subsets of features cannot be evaluated simply based on the prediction accuracy. If tiny changes to the data would lead to large changes in the chosen feature subset, then many selected features are likely to be a data artifact rather than real biological signal. This crucial need of identifying relevant and reproducible features motivated the reproducibility evaluation criterion such as Stability, which quantifies how robust a method is to perturbations in the data. In our paper, we compare the performance of popular model prediction metrics (MSE or AUC) with proposed reproducibility criterion Stability in evaluating four widely used feature selection methods in both simulations and experimental microbiome applications with continuous or binary outcomes. We conclude that Stability is a preferred feature selection criterion over model prediction metrics because it better quantifies the reproducibility of the feature selection method.


Subject(s)
Microbiota , Algorithms , Reproducibility of Results
8.
Int J Biol Macromol ; 245: 125556, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37364804

ABSTRACT

The treatment of gastric ulcer and perforation using synthetic and biomaterials has been a clinical challenge. In this work, a drug-carrying layer of hyaluronic acid was combined with a gastric submucosal decellularized extracellular matrix called gHECM. The regulation of macrophage polarization by the extracellular matrix's components was then investigated. This work proclaims how gHECM responds to inflammation and aids in the regeneration of the gastric lining by altering the phenotype of surrounding macrophages and stimulating the body's whole immune response. In a nutshell, gHECM promotes tissue regeneration by changing the phenotype of macrophages around the site of injury. In particular, gHECM reduces the production of pro-inflammatory cytokines, decreases the percentage of M1 macrophages, and further encourages differentiation of macrophage subpopulation to the M2 phenotype and the release of anti-inflammatory cytokines, which could block the NF-κB pathway. Activated macrophages are capable of immediately delivering through spatial barriers, modulating the peripheral immune system, influencing the inflammatory microenvironment, and ultimately promoting the recovery of inflammation and healing of ulcers. They contribute to the secreted cytokines that act on local tissues or enhance the chemotactic ability of macrophages through paracrine secretion. In this study, we focused on the immunological regulatory network of macrophage polarization to further develop the mechanisms behind this process. Nevertheless, the signaling pathways involved in this process need to be further explored and identified. We think that our research will encourage more investigation into how the decellularized matrix affects immune modulation and will help the decellularized matrix perform better as a new class of natural biomaterials for tissue engineering.


Subject(s)
Hyaluronic Acid , Stomach Ulcer , Humans , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Stomach Ulcer/metabolism , Macrophages/metabolism , Extracellular Matrix/metabolism , Cytokines/metabolism , Inflammation/metabolism , Biocompatible Materials/metabolism
9.
J Gerontol A Biol Sci Med Sci ; 78(10): 1925-1932, 2023 10 09.
Article in English | MEDLINE | ID: mdl-36655399

ABSTRACT

BACKGROUND: Growing evidence suggests bidirectional links between gut microbiota and sleep quality as shared contributors to health. Little is known about the relationship between microbiota and sleep among older persons. METHODS: We used 16S rRNA sequencing to characterize stool microbiota among men (n = 606, mean [standard deviation] age = 83.9 [3.8]) enrolled in the Osteoporotic Fractures in Men (MrOS) study from 2014 to 2016. Sleep was assessed concurrently by a questionnaire (Pittsburgh Sleep Quality index [PSQI]), and activity monitor to examine timing (acrophase) and regularity of patterns (F-statistic). Alpha diversity was measured using Faith's phylogenetic diversity (PD). Beta diversity was calculated with robust Aitchison distance with matrix completion (RPCA) and phylogenetic-RPCA (PRPCA). Their association with sleep variables was tested with partial distance-based redundancy analysis (dbRDA). Predictive-ratio biomarkers associated with sleep measurements were identified with CoDaCoRe. RESULTS: In unadjusted analyses, men with poor sleep (PSQI >5) tended to have lower alpha diversity compared to men with normal sleep (Faith's PD, beta = -0.15; 95% confidence interval [CI]: -0.30 to 0.01, p = .06). Sleep regularity was significantly associated with RPCA and PRPCA, even after adjusting for site, batch, age, ethnicity, body mass index, diabetes, antidepressant and sleep medication use, and health behaviors (RPCA/PRPCA dbRDA; p = .033/.002). In taxonomic analysis, ratios of 7:6 bacteria for better regularity (p = .0004) and 4:7 for worse self-reported sleep (p = .005) were differentially abundant: some butyrate-producing bacteria were associated with better sleep characteristics. CONCLUSIONS: Subjective and objective indicators of sleep quality suggest that older men with better sleep patterns are more likely to harbor butyrate-producing bacteria associated with better health.


Subject(s)
Gastrointestinal Microbiome , Osteoporotic Fractures , Male , Humans , Aged , Aged, 80 and over , Phylogeny , RNA, Ribosomal, 16S , Sleep , Butyrates
10.
Heliyon ; 9(11): e21333, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027647

ABSTRACT

FOXD1, a new member of the FOX transcription factor family, serves as a mediator and biomarker for cell reprogramming. But its contribution to prognosis of uveal melanoma (UVM) is unclear. This study demonstrated that FOXD1 might promote tumor growth and invasion, because FOXD1 expression was negatively correlated with overall survival, progression-free survival, and disease-specific survival in UVM patients. This conjecture was verified in cell culture with human uveal melanoma cell line (MUM2B) as model cells. Additionally, the biological mechanisms of FOXD1 based on FOXD1-related genomic spectrum, molecular pathways, tumor microenvironment, and drug treatment sensitivity were examined using The Cancer Genome Atlas (TCGA) database, aiming to reasonably explain why FOXD1 leads to poor prognosis of UVM. On these bases, a novel tumor prognostic model was established using the FOXD1-related immunomodulators TMEM173, TNFRSF4, TNFSF13, and ULBP1, which will enable the stratification of disease seriousness and clinical treatment for patients.

11.
Genes (Basel) ; 14(6)2023 06 09.
Article in English | MEDLINE | ID: mdl-37372419

ABSTRACT

Herein, we present a tool called Evident that can be used for deriving effect sizes for a broad spectrum of metadata variables, such as mode of birth, antibiotics, socioeconomics, etc., to provide power calculations for a new study. Evident can be used to mine existing databases of large microbiome studies (such as the American Gut Project, FINRISK, and TEDDY) to analyze the effect sizes for planning future microbiome studies via power analysis. For each metavariable, the Evident software is flexible to compute effect sizes for many commonly used measures of microbiome analyses, including α diversity, ß diversity, and log-ratio analysis. In this work, we describe why effect size and power analysis are necessary for computational microbiome analysis and show how Evident can help researchers perform these procedures. Additionally, we describe how Evident is easy for researchers to use and provide an example of efficient analyses using a dataset of thousands of samples and dozens of metadata categories.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Databases, Factual , Software
12.
Adv Biol (Weinh) ; 6(8): e2101313, 2022 08.
Article in English | MEDLINE | ID: mdl-35652166

ABSTRACT

The first week after birth is a critical time for the establishment of microbial communities for infants. Preterm infants face unique environmental impacts on their newly acquired microbiomes, including increased incidence of cesarean section delivery and exposure to antibiotics as well as delayed enteral feeding and reduced human interaction during their intensive care unit stay. Using contextualized paired metabolomics and 16S sequencing data, the development of the gut, skin, and oral microbiomes of infants is profiled daily for the first week after birth, and it is found that the skin microbiome appears robust to early life perturbation, while direct exposure of infants to antibiotics, rather than presumed maternal transmission, delays microbiome development and prevents the early differentiation based on body site regardless of delivery mode. Metabolomic analyses identify the development of all gut metabolomes of preterm infants toward full-term infant profiles, but a significant increase of primary bile acid metabolism only in the non-antibiotic treated vaginally birthed late preterm infants. This study provides a framework for future multi-omic, multibody site analyses on these high-risk preterm infant populations and suggests opportunities for monitoring and intervention, with infant antibiotic exposure as the primary driver of delays in microbiome development.


Subject(s)
Gastrointestinal Microbiome , Infant, Newborn, Diseases , Microbiota , Cesarean Section , Female , Gastrointestinal Microbiome/genetics , Humans , Infant , Infant, Newborn , Infant, Premature , Metabolome , Microbiota/genetics , Pregnancy
13.
Nat Biotechnol ; 39(2): 165-168, 2021 02.
Article in English | MEDLINE | ID: mdl-32868914

ABSTRACT

The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets.


Subject(s)
Algorithms , Gastrointestinal Microbiome , Humans , Infant
14.
Front Physiol ; 12: 663950, 2021.
Article in English | MEDLINE | ID: mdl-33897472

ABSTRACT

Obstructive sleep apnea (OSA), a common sleep disorder characterized by intermittent hypoxia and hypercapnia (IHC), increases atherosclerosis risk. However, the contribution of intermittent hypoxia (IH) or intermittent hypercapnia (IC) in promoting atherosclerosis remains unclear. Since gut microbiota and metabolites have been implicated in atherosclerosis, we examined whether IH or IC alters the microbiome and metabolome to induce a pro-atherosclerotic state. Apolipoprotein E deficient mice (ApoE-/- ), treated with IH or IC on a high-fat diet (HFD) for 10 weeks, were compared to Air controls. Atherosclerotic lesions were examined, gut microbiome was profiled using 16S rRNA gene amplicon sequencing and metabolome was assessed by untargeted mass spectrometry. In the aorta, IC-induced atherosclerosis was significantly greater than IH and Air controls (aorta, IC 11.1 ± 0.7% vs. IH 7.6 ± 0.4%, p < 0.05 vs. Air 8.1 ± 0.8%, p < 0.05). In the pulmonary artery (PA), however, IH, IC, and Air were significantly different from each other in atherosclerotic formation with the largest lesion observed under IH (PA, IH 40.9 ± 2.0% vs. IC 20.1 ± 2.6% vs. Air 12.2 ± 1.5%, p < 0.05). The most differentially abundant microbial families (p < 0.001) were Peptostreptococcaceae, Ruminococcaceae, and Erysipelotrichaceae. The most differentially abundant metabolites (p < 0.001) were tauro-ß-muricholic acid, ursodeoxycholic acid, and lysophosphoethanolamine (18:0). We conclude that IH and IC (a) modulate atherosclerosis progression differently in distinct vascular beds with IC, unlike IH, facilitating atherosclerosis in both aorta and PA and (b) promote an atherosclerotic luminal gut environment that is more evident in IH than IC. We speculate that the resulting changes in the gut metabolome and microbiome interact differently with distinct vascular beds.

15.
Med ; 2(8): 951-964.e5, 2021 08 13.
Article in English | MEDLINE | ID: mdl-35590169

ABSTRACT

BACKGROUND: Early microbiota perturbations are associated with disorders that involve immunological underpinnings. Cesarean section (CS)-born babies show altered microbiota development in relation to babies born vaginally. Here we present the first statistically powered longitudinal study to determine the effect of restoring exposure to maternal vaginal fluids after CS birth. METHODS: Using 16S rRNA gene sequencing, we followed the microbial trajectories of multiple body sites in 177 babies over the first year of life; 98 were born vaginally, and 79 were born by CS, of whom 30 were swabbed with a maternal vaginal gauze right after birth. FINDINGS: Compositional tensor factorization analysis confirmed that microbiota trajectories of exposed CS-born babies aligned more closely with that of vaginally born babies. Interestingly, the majority of amplicon sequence variants from maternal vaginal microbiomes on the day of birth were shared with other maternal sites, in contrast to non-pregnant women from the Human Microbiome Project (HMP) study. CONCLUSIONS: The results of this observational study prompt urgent randomized clinical trials to test whether microbial restoration reduces the increased disease risk associated with CS birth and the underlying mechanisms. It also provides evidence of the pluripotential nature of maternal vaginal fluids to provide pioneer bacterial colonizers for the newborn body sites. This is the first study showing long-term naturalization of the microbiota of CS-born infants by restoring microbial exposure at birth. FUNDING: C&D, Emch Fund, CIFAR, Chilean CONICYT and SOCHIPE, Norwegian Institute of Public Health, Emerald Foundation, NIH, National Institute of Justice, Janssen.


Subject(s)
Cesarean Section , Microbiota , Cesarean Section/adverse effects , Citizenship , Female , Humans , Infant , Infant, Newborn , Longitudinal Studies , Microbiota/genetics , Pregnancy , RNA, Ribosomal, 16S/genetics
16.
Microbiome ; 9(1): 132, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103074

ABSTRACT

BACKGROUND: SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial communities predict SARS-CoV-2 occurrence in a hospital setting. METHODS: We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify SARS-CoV-2 RNA detection with a random forest model. RESULTS: Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples. 16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genus Rothia strongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive surface and human samples, even when compared to samples from patients in other intensive care units prior to the COVID-19 pandemic. CONCLUSIONS: These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital environment. Video Abstract.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Pandemics , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Viral/genetics
17.
J Gerontol A Biol Sci Med Sci ; 75(7): 1267-1275, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32025711

ABSTRACT

Determining the role of gut microbial communities in aging-related phenotypes, including weight loss, is an emerging gerontology research priority. Gut microbiome datasets comprise relative abundances of microbial taxa that necessarily sum to 1; analysis ignoring this feature may produce misleading results. Using data from the Osteoporotic Fractures in Men (MrOS) study (n = 530; mean [SD] age = 84.3 [4.1] years), we assessed 163 genera from stool samples and body weight. We compared conventional analysis, which does not address the sum-to-1 constraint, to compositional analysis, which does. Specifically, we compared elastic net regression (for variable selection) and conventional Bayesian linear regression (BLR) and network analysis to compositional BLR and network analysis; adjusting for past weight, height, and other covariates. Conventional BLR identified Roseburia and Dialister (higher weight) and Coprococcus-1 (lower weight) after multiple comparisons adjustment (p < .0125); plus Sutterella and Ruminococcus-1 (p < .05). No conventional network module was associated with weight. Using compositional BLR, Coprococcus-2 and Acidaminococcus were most strongly associated with higher adjusted weight; Coprococcus-1 and Ruminococcus-1 were most strongly associated with lower adjusted weight (p < .05), but nonsignificant after multiple comparisons adjustment. Two compositional network modules with respective hub taxa Blautia and Faecalibacterium were associated with adjusted weight (p < .01). Findings depended on analytical workflow. Compositional analysis is advocated to appropriately handle the sum-to-1 constraint.


Subject(s)
Aging/physiology , Body Weight , Gastrointestinal Microbiome/physiology , Osteoporotic Fractures/epidemiology , Age Factors , Aged , Aged, 80 and over , Bayes Theorem , Cohort Studies , Humans , Linear Models , Male , Sex Factors
18.
Nat Commun ; 11(1): 5997, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244003

ABSTRACT

The vitamin D receptor is highly expressed in the gastrointestinal tract where it transacts gene expression. With current limited understanding of the interactions between the gut microbiome and vitamin D, we conduct a cross-sectional analysis of 567 older men quantifying serum vitamin D metabolites using LC-MSMS and defining stool sub-Operational Taxonomic Units from16S ribosomal RNA gene sequencing data. Faith's Phylogenetic Diversity and non-redundant covariate analyses reveal that the serum 1,25(OH)2D level explains 5% of variance in α-diversity. In ß-diversity analyses using unweighted UniFrac, 1,25(OH)2D is the strongest factor assessed, explaining 2% of variance. Random forest analyses identify 12 taxa, 11 in the phylum Firmicutes, eight of which are positively associated with either 1,25(OH)2D and/or the hormone-to-prohormone [1,25(OH)2D/25(OH)D] "activation ratio." Men with higher levels of 1,25(OH)2D and higher activation ratios, but not 25(OH)D itself, are more likely to possess butyrate producing bacteria that are associated with better gut microbial health.


Subject(s)
Calcifediol/analysis , Calcitriol/analysis , Gastrointestinal Microbiome/physiology , Aged , Aged, 80 and over , Butyrates/metabolism , Calcifediol/metabolism , Calcitriol/metabolism , Cross-Sectional Studies , DNA, Bacterial/isolation & purification , Feces/chemistry , Feces/microbiology , Humans , Independent Living , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Phylogeny , RNA, Ribosomal, 16S/genetics
19.
Curr Protoc Bioinformatics ; 70(1): e100, 2020 06.
Article in English | MEDLINE | ID: mdl-32343490

ABSTRACT

QIIME 2 is a completely re-engineered microbiome bioinformatics platform based on the popular QIIME platform, which it has replaced. QIIME 2 facilitates comprehensive and fully reproducible microbiome data science, improving accessibility to diverse users by adding multiple user interfaces. QIIME 2 can be combined with Qiita, an open-source web-based platform, to re-use available data for meta-analysis. The following basic protocol describes how to install QIIME 2 on a single computer and analyze microbiome sequence data, from processing of raw DNA sequence reads through generating publishable interactive figures. These interactive figures allow readers of a study to interact with data with the same ease as its authors, advancing microbiome science transparency and reproducibility. We also show how plug-ins developed by the community to add analysis capabilities can be installed and used with QIIME 2, enhancing various aspects of microbiome analyses-e.g., improving taxonomic classification accuracy. Finally, we illustrate how users can perform meta-analyses combining different datasets using readily available public data through Qiita. In this tutorial, we analyze a subset of the Early Childhood Antibiotics and the Microbiome (ECAM) study, which tracked the microbiome composition and development of 43 infants in the United States from birth to 2 years of age, identifying microbiome associations with antibiotic exposure, delivery mode, and diet. For more information about QIIME 2, see https://qiime2.org. To troubleshoot or ask questions about QIIME 2 and microbiome analysis, join the active community at https://forum.qiime2.org. © 2020 The Authors. Basic Protocol: Using QIIME 2 with microbiome data Support Protocol: Further microbiome analyses.


Subject(s)
Databases as Topic , Microbiota , Software , Biodiversity , Linear Models , Phylogeny
20.
mSphere ; 5(5)2020 09 23.
Article in English | MEDLINE | ID: mdl-32968008

ABSTRACT

In this cross-sectional study, we describe the composition and diversity of the gut microbiota among undernourished children living in urban slums of Mumbai, India, and determine how nutritional status, including anthropometric measurements, dietary intakes from complementary foods, feeding practices, and micronutrient concentrations, is associated with their gut microbiota. We collected rectal swabs from children aged 10 to 18 months living in urban slums of Mumbai participating in a randomized controlled feeding trial and conducted 16S rRNA sequencing to determine the composition of the gut microbiota. Across the study cohort, Proteobacteria dominated the gut microbiota at over 80% relative abundance, with Actinobacteria representation at <4%, suggesting immaturity of the gut. Increased microbial α-diversity was associated with current breastfeeding, greater head circumference, higher fat intake, and lower hemoglobin concentration and weight-for-length Z-score. In redundancy analyses, 47% of the variation in Faith's phylogenetic diversity (Faith's PD) could be accounted for by age and by iron and polyunsaturated fatty acid intakes. Differences in community structure (ß-diversity) of the microbiota were observed among those consuming fats and oils the previous day compared to those not consuming fats and oils the previous day. Our findings suggest that growth, diet, and feeding practices are associated with gut microbiota metrics in undernourished children, whose gut microbiota were comprised mainly of Proteobacteria, a phylum containing many potentially pathogenic taxa.IMPORTANCE The impact of comprehensive nutritional status, defined as growth, nutritional blood biomarkers, dietary intakes, and feeding practices, on the gut microbiome in children living in low-resource settings has remained underreported in microbiome research. Among undernourished children living in urban slums of Mumbai, India, we observed a high relative abundance of Proteobacteria, a phylum including many potentially pathogenic species similar to the composition in preterm infants, suggesting immaturity of the gut, or potentially a high inflammatory burden. We found head circumference, fat and iron intake, and current breastfeeding were positively associated with microbial diversity, while hemoglobin and weight for length were associated with lower diversity. Findings suggest that examining comprehensive nutrition is critical to gain more understanding of how nutrition and the gut microbiota are linked, particularly in vulnerable populations such as children in urban slum settings.


Subject(s)
Bacteria/classification , Gastrointestinal Microbiome , Malnutrition/epidemiology , Nutritional Status , Poverty Areas , Breast Feeding/statistics & numerical data , Cross-Sectional Studies , Diet , Female , Genetic Variation , Humans , India/epidemiology , Infant , Male , Malnutrition/microbiology , RNA, Ribosomal, 16S/genetics , Randomized Controlled Trials as Topic , Rectum/microbiology , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL