Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Conserv Biol ; : e14310, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842221

ABSTRACT

Climate change may diminish biodiversity; thus, it is urgent to predict how species' ranges may shift in the future by integrating multiple factors involving more taxa. Bats are particularly sensitive to climate change due to their high surface-to-volume ratio. However, few studies have considered geographic variables associated with roost availability and even fewer have linked the distributions of bats to their thermoregulation and energy regulation traits. We used species distribution models to predict the potential distributions of 12 bat species in China under current and future greenhouse gas emission scenarios (SSP1-2.6 and SSP5-8.5) and examined factors that could affect species' range shifts, including climatic, geographic, habitat, and human activity variables and wing surface-to-mass ratio (S-MR). The results suggest that Ia io, Rhinolophus ferrumequinum, and Rhinolophus rex should be given the highest priority for conservation in future climate conservation strategies. Most species were predicted to move northward, except for I. io and R. rex, which moved southward. Temperature seasonality, distance to forest, and distance to karst or cave were the main environmental factors affecting the potential distributions of bats. We found significant relationships between S-MR and geographic distribution, current potential distribution, and future potential distribution in the 2050s. Our work highlights the importance of analyzing range shifts of species with multifactorial approaches, especially for species traits related to thermoregulation and energy regulation, to provide targeted conservation strategies.


Patrones y correlaciones de los cambios potenciales en la distribución de las especies de murciélago de China en el contexto del cambio climático Resumen El cambio climático puede disminuir la biodiversidad, por lo que es urgente pronosticar cómo puede cambiar en el futuro la distribución de las especies mediante la integración de múltiples factores que involucren a más taxones. Los murciélagos son particularmente sensibles al cambio climático debido a que tienen una gran proporción superficie­volumen. Sin embargo, hay pocos estudios que han considerado las variables asociadas con la disponibilidad de nidos y son todavía menos los que han conectado la distribución de los murciélagos con sus rasgos de termorregulación y regulación de energía. Usamos modelos de distribución de especies para pronosticar la distribución potencial de doce especies de murciélago en China bajo escenarios actuales y futuros de emisión de gases de efecto invernadero (SSP1­2.6 y SSP5­8.5) y analizamos los factores que podrían afectar el cambio en la distribución de las especies, incluyendo las variables climáticas, geográficas, de hábitat y de actividad humana y la proporción entre la superficie del ala y la masa (P S­M). Los resultados sugieren que Ia io, Rhinolophus ferrumequinum y R. rex deberían ser la mayor prioridad de conservación para las estrategias de conservación climáticas en el futuro. Pronosticamos que la mayoría de las especies se desplazarían al norte, a excepción de I. io y R. rex, que se desplazarían hacia el sur. Los principales factores que afectaron la distribución potencial de los murciélagos fueron la estacionalidad de la temperatura, la distancia al bosque y la distancia a la cueva o al karst. Encontramos una relación significativa entre la P S­M y la distribución geográfica, la distribución potencial actual y la distribución potencial para la década de 2050. Nuestra investigación destaca la importancia del análisis de los cambios de distribución de las especies con enfoques multifactoriales, especialmente para los rasgos de especie relacionados con la termorregulación y la regulación de energía, para proporcionar estrategias de conservación focalizadas.

2.
Oecologia ; 201(3): 733-747, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36929223

ABSTRACT

The variation in niche breadth can affect how species respond to environmental and resource changes. However, there is still no clear understanding of how seasonal variability in food resources impacts the variation of individual dietary diversity, thereby affecting the dynamics of a population's dietary niche breadth. Optimal foraging theory (OFT) and the niche variation hypothesis (NVH) predict that when food resources are limited, the population niche breadth will widen or narrow due to increased within-individual dietary diversity and individual specialization or reduced within-individual dietary diversity, respectively. Here, we used DNA metabarcoding to examine the composition and seasonality of diets of the avivorous bat Ia io. Furthermore, we investigated how the dietary niches changed among seasons and how the population niche breadth changed when the availability of insect resources was reduced in autumn. We found that there was differentiation in dietary niches among seasons and a low degree of overlap, and the decrease of insect resource availability and the emergence of ecological opportunities of nocturnal migratory birds might drive dietary niche shifts toward birds in I. io. However, the population's dietary niche breadth did not broaden by increasing the within-individual dietary diversity or individual specialization, but rather became narrower by reducing dietary diversity via predation on bird resources that served as an ecological opportunity when insect resources were scarce in autumn. Our findings were consistent with the predictions of OFT, because birds as prey for bats provided extremely different resources from those of insects in size and nutritional value. Our work highlights the importance of size and quality of prey resources along with other factors (i.e., physiological, behavioral, and life-history traits) in dietary niche variation.


Subject(s)
Chiroptera , Animals , Seasons , Diet , Insecta , Predatory Behavior , Birds , Ecosystem
3.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902366

ABSTRACT

The Great Himalayan Leaf-nosed bat (Hipposideros armiger) is one of the most representative species of all echolocating bats and is an ideal model for studying the echolocation system of bats. An incomplete reference genome and limited availability of full-length cDNAs have hindered the identification of alternatively spliced transcripts, which slowed down related basic studies on bats' echolocation and evolution. In this study, we analyzed five organs from H. armiger for the first time using PacBio single-molecule real-time sequencing (SMRT). There were 120 GB of subreads generated, including 1,472,058 full-length non-chimeric (FLNC) sequences. A total of 34,611 alternative splicing (AS) events and 66,010 Alternative Polyadenylation (APA) sites were detected by transcriptome structural analysis. Moreover, a total of 110,611 isoforms were identified, consisting of 52% new isoforms of known genes and 5% of novel gene loci, as well as 2112 novel genes that have not been annotated before in the current reference genome of H. armiger. Furthermore, several key novel genes, including Pol, RAS, NFKB1, and CAMK4, were identified as being associated with nervous, signal transduction, and immune system processes, which may be involved in regulating the auditory nervous perception and immune system that helps bats to regulate in echolocation. In conclusion, the full-length transcriptome results optimized and replenished existing H. armiger genome annotation in multiple ways and offer advantages for newly discovered or previously unrecognized protein-coding genes and isoforms, which can be used as a reference resource.


Subject(s)
Chiroptera , Animals , Chiroptera/physiology , Transcriptome , Genome , Protein Isoforms/genetics , Plant Leaves
4.
BMC Genomics ; 23(1): 572, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35948882

ABSTRACT

BACKGROUND: Mammals rely on the circadian clock network to regulate daily systemic metabolism and physiological activities. The liver is an important peripheral organ in mammals, and it has a unique circadian rhythm regulation process. As the only mammals that can fly, bats have attracted much research attention due to their nocturnal habits and life histories. However, few research reports exist concerning the circadian rhythms of bat liver gene expression and the relevant biological clock regulation mechanisms in the liver. RESULTS: In this study, the expression levels of liver genes of Asian particolored bats were comparatively analyzed using RNA-seq at four different time points across 24 h. A total of 996 genes were found to be rhythmic, accounting for 65% of the total number of expressed genes. The critical circadian rhythm genes Bmal1, Rev-erbα, Cry, and Ror in the liver exhibited different expression patterns throughout the day, and participated in physiological processes with rhythmic changes, including Th17 cell differentiation (ko04659), antigen processing and presentation (ko04612), the estrogen signaling pathway (ko04915), and insulin resistance (ko04931). In addition, previous studies have found that the peroxisome proliferator-activated receptor (PPAR) metabolic signaling pathway (ko03320) may play a vital role in the rhythmic regulation of the metabolic network. CONCLUSIONS: This study is the first to demonstrate diurnal changes in bat liver gene expression and related physiological processes. The results have thus further enriched our understanding of bats' biological clocks.


Subject(s)
Chiroptera , Circadian Clocks , Animals , Chiroptera/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression Regulation , Liver/metabolism , Transcriptome
5.
Anim Cogn ; 24(4): 689-702, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33409759

ABSTRACT

In highly vocal species, territorial aggression is often accompanied using vocalizations. These vocalizations can play a critical role in determining the outcome of male-male agonistic interactions. For this, vocalizations of contestants must contain information that is indicative of each competitor's fighting ability as well as its identity, and also contestants must be able to perceive information about the physical attributes, quality and identity of the vocalizer. Here, we used adult male Great Himalayan leaf-nosed bats (Hipposideros armiger) to test whether territorial calls encoded honest information about a caller's physical attributes, quality and individual identity. We did this by exploring the relationships between territorial calls and two potential indices of fighting ability: body mass and dominance rank. Using synchronized audio-video recording, we monitored bat territorial calls and dominance rank of 16 adult male H. armiger in the laboratory. Additionally, habituation-dishabituation playback experiments were performed to test for vocal discrimination. Results showed that body mass was negatively related to minimum frequency and positively related to syllable duration. Dominance score was also negatively related to minimum frequency and positively related to peak frequency. Furthermore, a discriminant function analysis suggested that territorial calls encode an individual signature. Therefore, our data show that males have the ability to utilize this vocal individual signature to discriminate between vocalizing males. In short, territorial calls of male H. armiger contain information about body mass, dominance rank and individual identity, and contestants are probably capable of perceiving this information and may use it to make appropriate decisions during agonistic interactions.


Subject(s)
Chiroptera , Aggression , Animals , Male , Territoriality , Vocalization, Animal
6.
Front Zool ; 17: 8, 2020.
Article in English | MEDLINE | ID: mdl-32206076

ABSTRACT

BACKGROUND: Genetic and ecological factors influence morphology, and morphology is compatible with function. The morphology and bite performance of skulls of bats show a number of characteristic feeding adaptations. The great evening bat, Ia io (Thomas, 1902), eats both insects and birds (Thabah et al. J Mammal 88: 728-735, 2007), and as such, it is considered to represent a case of dietary niche expansion from insects to birds. How the skull morphology or bite force in I. io are related to the expanded diet (that is, birds) remains unknown. We used three-dimensional (3D) geometry of the skulls and measurements of bite force and diets from I. io and 13 other species of sympatric or closely related bat species to investigate the characteristics and the correlation of skull morphology and bite force to diets. RESULTS: Significant differences in skull morphology and bite force among species and diets were observed in this study. Similar to the carnivorous bats, bird-eaters (I. io) differed significantly from insectivorous bats; I. io had a larger skull size, taller crania, wider zygomatic arches, shorter but robust mandibles, and larger bite force than the insectivores. The skull morphology of bats was significantly associated with bite force whether controlling for phylogeny or not, but no significant correlations were found between diets and the skulls, or between diets and residual bite force, after controlling for phylogeny. CONCLUSIONS: These results indicated that skull morphology was independent of diet, and phylogeny had a greater impact on skull morphology than diet in these species. The changes in skull size and morphology have led to variation in bite force, and finally different bat species feeding on different foods. In conclusion, I. io has a larger skull size, robust mandibles, shortened dentitions, longer coronoid processes, expanded angular processes, low condyles, and taller cranial sagittal crests, and wider zygomatic arches that provide this species with mechanical advantages; their greater bite force may help them use larger and hard-bodied birds as a dietary component.

7.
Mol Ecol ; 28(11): 2944-2954, 2019 06.
Article in English | MEDLINE | ID: mdl-31063664

ABSTRACT

Niche expansion and shifts are involved in the response and adaptation to environmental changes. However, it is unclear how niche breadth evolves and changes toward higher-quality resources. Myotis pilosus is both an insectivore and a piscivore. We examined the dietary composition and seasonality in M. pilosus and the closely related Myotis fimbriatus using next-generation DNA sequencing. We tested whether resource variation or resource partitioning help explain the dietary expansion from insects to fish in M. pilosus. While diet composition and diversity varied significantly between summer and autumn, the proportion of fish-eating individuals did not significantly change between seasons in M. pilosus. Dietary overlap between M. pilosus and M. fimbriatus during the same seasons was much higher than within individual species across seasons. We recorded a larger body size, hind foot length, and body mass in M. pilosus than in M. fimbriatus and other insectivorous trawling bats from China. Similar morphological differences were found between worldwide fishing bats and nonfishing trawling bats. Our results suggest that variation in insect availability or interspecific competition may not play important roles in the dietary expansion from insects to fish in M. pilosus. Myotis pilosus has morphological advantages that may help it use fish as a diet component. The morphological advantage promoting dietary niche evolution toward higher quality resources may be more important than variation in the original resource and the effects of interspecific competition.


Subject(s)
Chiroptera/anatomy & histology , Diet , Ecosystem , Predatory Behavior , Animals , Feces , Fishes , Seasons
8.
Anim Cogn ; 22(2): 199-212, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30631993

ABSTRACT

Natural background noises are common in the acoustic environments in which most organisms have evolved. Therefore, the vocalization and sound perception systems of vocal animals are inherently equipped to overcome natural background noise. Human-generated noises, however, pose new challenges that can hamper audiovocal communication. The mechanisms animals use to cope with anthropogenic noise disturbances have been extensively explored in a variety of taxa. Bats emit echolocation pulses primarily to orient, locate and navigate, while social calls are used to communicate with conspecifics. Previous studies have shown that bats alter echolocation pulse parameters in response to background noise interference. In contrast to high-frequency echolocation pulses, relatively low-frequency components within bat social calls overlap broadly with ambient noise frequencies. However, how bats structure their social calls in the presence of anthropogenic noise is not known. Here, we hypothesized that bats leverage vocal plasticity to facilitate vocal exchanges within a noisy environment. To test this hypothesis, we subjected the Asian particolored bat, Vespertilio sinensis, to prerecorded traffic noise. We observed a significant decrease in vocal complexity (i.e., an increased frequency of monosyllabic calls) in response to traffic noise. However, an increase in the duration and frequency of social calls, as have been observed in other species, was not evident. This suggests that signal simplification may increase communication efficacy in noisy environments. Moreover, V. sinensis also increased call amplitude in response to increased traffic noise, consistent with the predictions of the Lombard effect.


Subject(s)
Chiroptera , Echolocation , Noise , Vocalization, Animal , Acoustics , Adaptation, Psychological , Animals , Chiroptera/physiology , Communication , Heart Rate , Vocalization, Animal/physiology
9.
Proc Biol Sci ; 283(1826): 20152861, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26962138

ABSTRACT

Predicting species' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host-pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host-pathogen coevolution.


Subject(s)
Ascomycota/physiology , Chiroptera , Communicable Diseases, Emerging/veterinary , Extinction, Biological , Mycoses/veterinary , Animals , China/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Host-Pathogen Interactions , Illinois/epidemiology , Mycoses/epidemiology , Mycoses/microbiology , Prevalence , Wisconsin/epidemiology
10.
J Exp Biol ; 219(Pt 6): 834-43, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26787476

ABSTRACT

Mammalian hibernators experience physiological extremes, e.g. ischemia, muscle disuse and hypothermia, which are lethal to non-hibernators, implying the existence of underlying mechanisms that allow hibernators to withstand these physiological extremes. Increased cell proliferation is suggested to be such a strategy, but its molecular basis remains unknown. In this study, we characterized the expression pattern of ZBED1 (zinc finger, BED-type containing 1), a transcription factor that plays a crucial role in regulating cell proliferation, in five tissues of the greater horseshoe bat (Rhinolophus ferrumequinum) during pre-hibernation, deep hibernation and post-hibernation. Moreover, we investigated the ZBED1 genetic divergence from individuals with variable hibernation phenotypes that cover all three known mtDNA lineages of the species. Expression analyses showed that ZBED1 is overexpressed only in brain and skeletal muscle, not in the other three tissues, suggesting an increased cell proliferation in these two tissues during deep hibernation. Evolutionary analyses showed that ZBED1 sequences were clustered into two well-supported clades with each one dominated by hibernating and non-hibernating individuals, respectively. Positive selection analyses further showed some positively selected sites and a divergent selection pressure among hibernating and non-hibernating groups of R. ferrumequinum. Our results suggest that ZBED1 as a potential candidate gene that regulates cell proliferation for hibernators to face physiological extremes during hibernation.


Subject(s)
Chiroptera/genetics , Hibernation/genetics , Transcription Factors/metabolism , Zinc Fingers , Adaptation, Physiological/genetics , Animals , Brain/metabolism , Chiroptera/physiology , Evolution, Molecular , Gene Expression Profiling , Hibernation/physiology , Muscle, Skeletal/metabolism , Transcription Factors/genetics
11.
Proc Natl Acad Sci U S A ; 110(10): 4063-8, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23431172

ABSTRACT

The Lombard effect, an involuntary rise in call amplitude in response to masking ambient noise, represents one of the most efficient mechanisms to optimize signal-to-noise ratio. The Lombard effect occurs in birds and mammals, including humans, and is often associated with several other vocal changes, such as call frequency and duration. Most studies, however, have focused on noise-dependent changes in call amplitude. It is therefore still largely unknown how the adaptive changes in call amplitude relate to associated vocal changes such as frequency shifts, how the underlying mechanisms are linked, and if auditory feedback from the changing vocal output is needed. Here, we examined the Lombard effect and the associated changes in call frequency in a highly vocal mammal, echolocating horseshoe bats. We analyzed how bandpass-filtered noise (BFN; bandwidth 20 kHz) affected their echolocation behavior when BFN was centered on different frequencies within their hearing range. Call amplitudes increased only when BFN was centered on the dominant frequency component of the bats' calls. In contrast, call frequencies increased for all but one BFN center frequency tested. Both amplitude and frequency rises were extremely fast and occurred in the first call uttered after noise onset, suggesting that no auditory feedback was required. The different effects that varying the BFN center frequency had on amplitude and frequency rises indicate different neural circuits and/or mechanisms underlying these changes.


Subject(s)
Chiroptera/physiology , Echolocation/physiology , Acoustic Stimulation , Animals , Female , Hearing/physiology , Male , Noise , Perceptual Masking/physiology , Signal-To-Noise Ratio , Vocalization, Animal/physiology
12.
J Acoust Soc Am ; 140(5): 3765, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27908088

ABSTRACT

Insectivorous bats vocalize to both communicate with conspecifics and to echolocate. The communicative vocalizations or "calls" of bats either consist of or are constructed from discrete acoustic units, termed "syllables." This study examined syllable diversity in the Himalayan leaf-nosed bat, Hipposideros armiger, a species that is widely distributed across Southeast Asia. This social species' vocalizations were hypothesized to consist of a wide variety of syllables facilitating its social interactions. To test this hypothesis, multiple acoustic parameters were measured from recorded vocalizations to map the acoustic boundaries of syllables. Spectrographic signatures were used to classify all recorded sounds into 35 distinct syllable types-18 as simple syllables and 17 as composites. K-means clustering independently provided an optimal fit of simple syllables into 18 clusters with a good correspondence to 15 spectrographically assigned syllable types. Discriminant analysis further confirmed the spectrographic classification of constant frequency syllables (0% misclassification) and revealed a low (<15%) misclassification of spectrograms for all examples of frequency modulation syllables. Multidimensional scaling of mean values of multiple parameters provided a spectrographically constrained relational mapping of syllable types within two dimensions. These data suggest that H. armiger has a complex, well organized syllabic repertoire despite simple syllables being rarely emitted in isolation.


Subject(s)
Chiroptera , Acoustics , Animals , Interpersonal Relations , Sound Spectrography , Vocalization, Animal
13.
J Exp Biol ; 218(Pt 1): 100-6, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25568456

ABSTRACT

When facing the challenges of environmental change, such as habitat fragmentation, organisms have to adjust their phenotype to adapt to various environmental stresses. Recent studies show that epigenetic modifications could mediate environmentally induced phenotypic variation, and this epigenetic variance could be inherited by future generations, indicating that epigenetic processes have potential evolutionary effects. Bats living in diverse environments show geographic variations in phenotype, and the females usually have natal philopatry, presenting an opportunity to explore how environments shape epigenetic marks on the genome and the evolutionary potential of epigenetic variance in bat populations for adaptation. We have explored the natural epigenetic diversity and structure of female populations of the great roundleaf bat (Hipposideros armiger), the least horseshoe bat (Rhinolophus pusillus) and the eastern bent-winged bat (Miniopterus fuliginosus) using a methylation-sensitive amplified polymorphism technique. We have also estimated the effects of genetic variance and ecological variables on epigenetic diversification. All three bat species have a low level of genomic DNA methylation and extensive epigenetic diversity that exceeds the corresponding genetic variance. DNA sequence divergence, epigenetic drift and environmental variables contribute to the epigenetic diversities of each species. Environment-induced epigenetic variation may be inherited as a result of both mitosis and meiosis, and their potential roles in evolution for bat populations are also discussed in this review.


Subject(s)
Biological Evolution , Chiroptera/genetics , Epigenesis, Genetic , Genetic Variation , Animals , Genetics, Population , Inheritance Patterns/genetics
14.
J Exp Biol ; 217(Pt 14): 2440-4, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24855671

ABSTRACT

One of the most efficient mechanisms to optimize signal-to-noise ratios is the Lombard effect - an involuntary rise in call amplitude due to ambient noise. It is often accompanied by changes in the spectro-temporal composition of calls. We examined the effects of broadband-filtered noise on the spectro-temporal composition of horseshoe bat echolocation calls, which consist of a constant-frequency component and initial and terminal frequency-modulated components. We found that the frequency-modulated components became larger for almost all noise conditions, whereas the bandwidth of the constant-frequency component increased only when broadband-filtered noise was centered on or above the calls' dominant or fundamental frequency. This indicates that ambient noise independently modifies the associated acoustic parameters of the Lombard effect, such as spectro-temporal features, and could significantly affect the bat's ability to detect and locate targets. Our findings may be of significance in evaluating the impact of environmental noise on echolocation behavior in bats.


Subject(s)
Chiroptera/physiology , Echolocation/physiology , Perceptual Masking , Signal-To-Noise Ratio , Vocalization, Animal/physiology , Acoustic Stimulation , Animals , Noise
15.
J Acoust Soc Am ; 135(2): 928-32, 2014 Feb.
Article in English | MEDLINE | ID: mdl-25234900

ABSTRACT

Studying relationships between characteristics of sonar pulses and habitat clutter level is important for the understanding of signal design in bat echolocation. However, most studies have focused on overall spectral and temporal parameters of such vocalizations, with focus less on potential variation in frequency modulation rates (MRs) occurring within each pulse. In the current study, frequency modulation (FM) characteristics were examined in echolocation pulses recorded from big-footed myotis (Myotis macrodactylus) bats as these animals searched for prey in five habitats differing in relative clutter level. Pulses were analyzed using ten parameters, including four structure-related characters which were derived by dividing each pulse into three elements based on two knees in the FM sweep. Results showed that overall frequency, pulse duration, and MR all varied across habitat. The strongest effects were found for MR in the body of the pulse, implying that this particular component plays a major role as M. macrodactylus, and potentially other bat species, adjust to varying clutter levels in their foraging habitats.


Subject(s)
Chiroptera/physiology , Echolocation , Ecosystem , Predatory Behavior , Vocalization, Animal , Animals , Chiroptera/psychology , Motion , Signal Processing, Computer-Assisted , Sound , Sound Spectrography , Time Factors , Ultrasonics/methods
16.
Animals (Basel) ; 14(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38473199

ABSTRACT

Insectivorous bats are generalist predators and can flexibly respond to fluctuations in the distribution and abundance of insect prey. To better understand the effects of bats on arthropod pests, the types of pests eaten by bats and the response of bats to insect prey need to be determined. In this study, we performed DNA metabarcoding to examine prey composition and pest diversity in the diets of four insectivorous species of bats (Hipposideros armiger, Taphozous melanopogon, Aselliscus stoliczkanus, and Miniopterus fuliginosus). We evaluated the correlation between bat activity and insect resources and assessed dietary niche similarity and niche breadth among species and factors that influence prey consumption in bats. We found that the diets of these bats included arthropods from 23 orders and 200 families, dominated by Lepidoptera, Coleoptera, and Diptera. The proportion of agricultural pests in the diet of each of the four species of bats exceeded 40% and comprised 713 agricultural pests, including those that caused severe economic losses. Bats responded to the availability of insects. For example, a higher abundance of insects, especially Lepidoptera, and a higher insect diversity led to an increase in the duration of bat activity. In areas with more abundant insects, the number of bat passes also increased. The dietary composition, diversity, and niches differed among species and were particularly significant between H. armiger and T. melanopogon; the dietary niche width was the greatest in A. stoliczkanus and the narrowest in H. armiger. The diet of bats was correlated with their morphological and echolocation traits. Larger bats preyed more on insects in the order Coleoptera, whereas the proportion of bats consuming insects in the order Lepidoptera increased as the body size decreased. Bats that emitted echolocation calls with a high peak frequency and duration preyed more on insects in the order Mantodea. Our results suggest that dietary niche differentiation promotes the coexistence of different bat species and increases the ability of bats to consume insect prey and agricultural pests. Our findings provide greater insights into the role of bats that prey on agricultural pests and highlight the importance of combining bat conservation with integrated pest management.

17.
Evolution ; 78(5): 964-970, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38305496

ABSTRACT

Agonistic displays are one of the most diverse social behaviors that have important functions in animal's life history. However, their origin and driving factors have largely been unexplored. Here, we evaluated agonistic displays of 71 bat species across 10 families and classified these displays into two categories: (a) boxing displays where a bat attacks its opponent with its wrist and thumb and (b) pushing displays where a bat uses its head or body to hit a rival. We estimated the strength of the phylogenetic signal of the agonistic displays, revealed their origin, and tested the potential evolutionary relationships between agonistic behaviors and body size or resting posture (free hanging vs. contact hanging where the bat is in contact with some surface). We found that agonistic displays were phylogenetically conserved and that boxing displays are the ancestral state. Moreover, we found that bats with a free-hanging resting posture were more likely to exhibit boxing displays than pushing displays. In addition, bats with longer forearms do not have a higher propensity for boxing displays. This study expands our limited knowledge of the evolution of agonistic displays and highlights the importance of resting posture as a driving force in the diversity of agonistic displays.


Subject(s)
Biological Evolution , Chiroptera , Posture , Animals , Chiroptera/physiology , Chiroptera/genetics , Agonistic Behavior , Phylogeny , Body Size
18.
Sci Data ; 11(1): 480, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730001

ABSTRACT

Currently, three carnivorous bat species, namely Ia io, Nyctalus lasiopterus, and Nyctalus aviator, are known to actively prey on seasonal migratory birds (hereinafter referred to as "avivorous bats"). However, the absence of reference genomes impedes a thorough comprehension of the molecular adaptations of avivorous bat species. Herein, we present the high-quality chromosome-scale reference genome of N. aviator based on PacBio subreads, DNBSEQ short-reads and Hi-C sequencing data. The genome assembly size of N. aviator is 1.77 Gb, with a scaffold N50 of 102 Mb, of which 99.8% assembly was anchored into 21 pseudo-chromosomes. After masking 635.1 Mb repetitive sequences, a total of 19,412 protein-coding genes were identified, of which 99.3% were functionally annotated. The genome assembly and gene prediction reached 96.1% and 96.1% completeness of Benchmarking Universal Single-Copy Orthologs (BUSCO), respectively. This chromosome-level reference genome of N. aviator fills a gap in the existing information on the genomes of carnivorous bats, especially avivorous ones, and will be valuable for mechanism of adaptations to dietary niche expansion in bat species.


Subject(s)
Chiroptera , Chromosomes , Genome , Animals , Chiroptera/genetics
19.
Article in English | MEDLINE | ID: mdl-23377576

ABSTRACT

Animal communication follows many coding schemes. Less is known about the coding strategy for signal length and rates of use in animal vocal communication. A generalized brevity (negative relation between signal length and frequency of use) is innovatively explored but remains controversial in animal vocal communication. We tested brevity for short-range social and distress sounds from four echolocating bats: adult black-bearded tomb bat Taphozous melanopogon, Mexican free-tailed bat Tadarida brasiliensis, adult greater horseshoe bat Rhinolophus ferrumequinum, and adult least horseshoe bat Rhinolophus pusillus. There was a negative association between duration and number of social but not distress calls emitted. The most frequently emitted social calls were brief, while most distress calls were long. Brevity or lengthiness was consistently selected in vocal communications for each species. Echolocating bats seem to have convergent coding strategy for communication calls. The results provide the evidence of efficient coding in bat social vocalizations, and lay the basis of future researches on the convergence for neural control on bats' communication calls.


Subject(s)
Auditory Perception , Chiroptera/physiology , Echolocation , Vocalization, Animal , Animals , Social Behavior , Sound Spectrography , Time Factors
20.
Integr Zool ; 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37427486

ABSTRACT

Anti-predation strategies are critical to animal survival and are fundamental to deciphering predator-prey interactions. As an important defense strategy, sensory predator detection (such as through acoustic and visual cues) enables animals to assess predation risk and execute predator-avoidance behavior; however, there are limited studies on the anti-predation behavior of nocturnal animals. The prey of bats provides an excellent representative system for examining the anti-predation behavior of nocturnal animals. Here, we broadcasted different types of echolocation calls of the bird-eating bat Ia io to two wild passerine birds, namely, Zosterops japonicus and Sinosuthora webbiana, that are preyed upon by I. io, and presented the birds with individual bats under different light intensities. The results showed that both bird species were able to perceive the low-frequency audible portion of the bats' echolocation calls; however, they did not exhibit escape responses to the acoustic stimuli. In the dark and under moonlit conditions, both bird species were unable to respond to active bats at close range and the birds only exhibited evasive flight behavior when bats approached or touched them. These results suggest that nocturnal passerine birds may not be able to use acoustic or visual cues to detect bats and adopt evasive maneuvers to avoid predation. This work suggests that bat predation pressure may not elicit primary predator-avoidance responses in nocturnal passerine birds. The results provide new insights into the anti-predation behavior of nocturnal animals.

SELECTION OF CITATIONS
SEARCH DETAIL