ABSTRACT
BACKGROUND: To compare the clinical value of recombinant human granulocyte colony-stimulating factor (rhG-CSF) and pegylated rhG-CSF(PEG-rhG-CSF) in early-stage breast cancer (EBC) patients receiving adjuvant chemotherapy, compare the efficacy of PEG-rhG-CSF with different dose and explore the timing of rhG-CSF rescue treatment. METHODS: Patients in two PEG-rhG-CSF subgroups were given 3 mg or 6 mg PEG-rhG-CSF within 24 ~ 48 h after chemotherapy for preventing myelosuppression, while patients in the rhG-CSF group were given rhG-CSF. Observation indicators include the incidence of febrile neutropenia (FN) and grade 3/4 chemotherapy-induced-neutropenia (CIN), the overall levels and nadir values of white blood cells (WBC) and absolute neutrophil count (ANC), comparison of WBC and ANC curves over time, the incidence of CIN-related complications, the incidence of adverse events in each group and the timing of rescue treatment for rhG-CSF. RESULTS: There was no significant difference in the incidence of FN in the first cycle among the groups (P = 0.203). But the incidence of ≥ 3 grade CIN in two PEG-rhG-CSF subgroups was significantly lower than that in the rhG-CSF group (P < 0.001). The overall WBC and ANC levels in the PEG-rhG-CSF group were significantly higher than those in the rhG-CSF group (P < 0.001). In terms of CIN-related complications, less chemotherapy delay rate (1.1 vs. 7.5%, P = 0.092), less dose reduction rate (6.9 vs. 7.5%, P = 1.000), less antibiotic use rate (3.4 vs. 17.5%, P = 0.011) and less proportion of rhG-CSF rescue therapy (24.1 vs. 85.0%, P < 0.001) in the PEG-rhG-CSF group, and there were no significant differences between PEG-rhG-CSF subgroups. In the incidence of adverse events among the groups, there were no statistical differences. All patients undergoing rhG-CSF rescue treatment were mainly 4 grade (63.6%) and 3 grade (25.5%) CIN, and 10.9% of patients with 1 ~ 2 grade CIN who had high infection risk or had been infected. CONCLUSION: PEG-rhG-CSF has better efficacy and equal tolerance compared with rhG-CSF in preventing CIN in EBC patients receiving EC regimen. Moreover, a half-dose 3 mg PEG-rhG-CSF also had good efficacy. Last, patients with ≥ 3 grade CIN and others who have been assessed to be at high risk of infection or have co-infection should consider rhG-CSF or even antibiotic rescue treatment.
Subject(s)
Antineoplastic Agents , Breast Neoplasms , Neutropenia , Female , Humans , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/etiology , Granulocyte Colony-Stimulating Factor , Neutropenia/chemically induced , Neutropenia/prevention & control , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic useABSTRACT
Osteosarcoma (OS) is a highly metastatic bone cancer that usually affects children. Rhizoma Paridis saponins (RPS) have been identified to show a broad-spectrum anti-tumor activity. Our previous study has identified vasculogenic mimicry (VM) as an indicator of poor prognosis for OS. Rhizoma Paridis ethanol extract exhibits potent anti-OS property. However, the anti-metastatic effect of RPS on OS and the detailed mechanisms remain unknown. RPS was characterized by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/Q-TOF/MS) analysis. The anti-OS, anti-metastasis and anti-VM activities of RPS were investigated using in vitro biological assays and a xenograft mouse model. Western blot, qRT-PCR, ELISA, Phalloidin staining and immunohistochemistry assays were conducted to investigate the molecular mechanism of RPS. A total of 34 phytochemicals from RPS were identified by LC/Q-TOF/MS. RPS dose-dependently suppressed the OS cell proliferation, metastasis and VM formation in vitro and in vivo. Mechanically, we found that RPS downregulated migration-inducing gene 7 (MIG-7) expression, resulting in inhibition of the PI3K/MMPs/Ln-5γ2 pathway and cell protrusion formation. Additionally, we confirmed that RPS downregulated MIG-7 by upregulating miR-520d-3p expression. Our results suggests that RPS inhibits the VM formation and metastasis of OS by modulating the miR-520d-3p/MIG-7 signaling axis.
Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Saponins , Animals , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Ethanol , Humans , Mice , MicroRNAs/genetics , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/pathology , Phalloidine/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Saponins/pharmacology , Saponins/therapeutic useABSTRACT
Vasculogenic mimicry (VM) refers to a novel mode of tumor microcirculation, which provides an escape route for tumor metastasis, and thereby correlates with a poor prognosis. We previously reported MIG-7 plays a pivotal role in osteosarcoma (OS) VM. However, the precise mechanism of MIG-7 in regulating OS VM remains to be elucidated. The expression levels of miR-520d-3p and MIG-7 were measured in OS cell lines. The effects of the miR-520d-3p/MIG-7 axis were investigated by in vitro functional assays. An orthotopic xenograft model was established to assess the role of the miR-520d-3p/MIG-7 axis in OS cells in vivo. Phalloidin staining, western blot, immunohistochemistry, ELISA assays were carried out to explore the molecular events that were involved in the miR-520d-3p/MIG-7 axis-mediated VM formation. The miR-520d-3p expression level was inversely correlated with MIG-7 in these cell lines. miR-520d-3p overexpression suppressed the proliferation, migration, invasion, VM, and promotes the adhesion of OS cells in vitro. miR-520d-3p could directly bind to the 3'-UTR of MIG-7 and regulated MIG-7 expression, which led to impaired lamellipodia and filopodia formation and inactivation of the PI3K/MMPs/Ln-5γ2 signaling pathway. The anti-metastatic and anti-VM effects of miR-520d-3p were confirmed in vivo. Our findings suggest miR-520d-3p acts as a tumor suppressor by inhibiting VM formation in OS via targeting MIG-7.
Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , 3' Untranslated Regions , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathologyABSTRACT
Although the initial research focused on glycolysis, mitochondrial oxidative phosphorylation has become a major target of cancer cells. Cytochrome C oxidase assembly factor 6 (COA6) is a conserved assembly factor necessary for complex IV biogenesis. Nevertheless, the clinical predictive value of COA6, especially its correlation with immune cell infiltration in lung adenocarcinoma (LUAD), has not yet been elucidated. COA6 exhibited higher expression levels in LUAD cells and tumor tissues compared to normal tissues. Additionally, heightened COA6 expression was associated with reduced overall survival (OS) and advanced tumor stage. Apart from its role in mitochondrial respiratory processes, COA6 may be involved in the process of antigen binding, immunoglobulin receptor binding. Interestingly, we observed a positive correlation between COA6 expression and tumor mutational burden (TMB), as well as a significant association with decreased immune cell infiltration. COA6 was linked to resistance against gemcitabine and etoposide. We verified that COA6 was highly expressed in LUAD experimentally and cell proliferation was inhibited after COA6 knockdown. Thus, we conclude that the expression of COA6 was correlated with reduced immune cell infiltration. Additionally, COA6 functioned as a biomarker for drug sensitivity and the prognosis of lung adenocarcinoma.