Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 430
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Cell ; 35(1): 279-297, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36149299

ABSTRACT

The salt overly sensitive (SOS) pathway is essential for maintaining sodium ion homeostasis in plants. This conserved pathway is activated by a calcium signaling-dependent phosphorylation cascade. However, the identity of the phosphatases and their regulatory mechanisms that would deactivate the SOS pathway remain unclear. In this study, we demonstrate that PP2C.D6 and PP2C.D7, which belong to clade D of the protein phosphatase 2C (PP2C) subfamily in Arabidopsis thaliana, directly interact with SOS1 and inhibit its Na+/H+ antiporter activity under non-salt-stress conditions. Upon salt stress, SOS3-LIKE CALCIUM-BINDING PROTEIN8 (SCaBP8), a member of the SOS pathway, interacts with the PP2Cs and suppresses their phosphatase activity; simultaneously, SCaBP8 regulates the subcellular localization of PP2C.D6 by releasing it from the plasma membrane. Thus, we identified two negative regulators of the SOS pathway that repress SOS1 activity under nonstress conditions. These processes set the stage for the activation of SOS1 by the kinase SOS2 to achieve plant salt tolerance. Our results suggest that reversible phosphorylation/dephosphorylation is crucial for the regulation of the SOS pathway, and that calcium sensors play dual roles in activating/deactivating SOS2 and PP2C phosphatases under salt stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Protein Phosphatase 2C/metabolism , Calcium/metabolism , Phosphorylation
2.
Plant Physiol ; 194(4): 2491-2510, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38039148

ABSTRACT

Passion fruit (Passiflora edulis) possesses a complex aroma and is widely grown in tropical and subtropical areas. Here, we conducted the de novo assembly, annotation, and comparison of PPF (P. edulis Sims) and YPF (P. edulis f. flavicarpa) reference genomes using PacBio, Illumina, and Hi-C technologies. Notably, we discovered evidence of recent whole-genome duplication events in P. edulis genomes. Comparative analysis revealed 7.6∼8.1 million single nucleotide polymorphisms, 1 million insertions/deletions, and over 142 Mb presence/absence variations among different P. edulis genomes. During the ripening of yellow passion fruit, metabolites related to flavor, aroma, and color were substantially accumulated or changed. Through joint analysis of genomic variations, differentially expressed genes, and accumulated metabolites, we explored candidate genes associated with flavor, aroma, and color distinctions. Flavonoid biosynthesis pathways, anthocyanin biosynthesis pathways, and related metabolites are pivotal factors affecting the coloration of passion fruit, and terpenoid metabolites accumulated more in PPF. Finally, by heterologous expression in yeast (Saccharomyces cerevisiae), we functionally characterized 12 terpene synthases. Our findings revealed that certain TPS homologs in both YPF and PPF varieties produce identical terpene products, while others yield distinct compounds or even lose their functionality. These discoveries revealed the genetic and metabolic basis of unique characteristics in aroma and flavor between the 2 passion fruit varieties. This study provides resources for better understanding the genome architecture and accelerating genetic improvement of passion fruits.


Subject(s)
Fruit , Passiflora , Fruit/genetics , Odorants , Passiflora/genetics , Passiflora/metabolism , Multiomics , Terpenes/metabolism
3.
PLoS Biol ; 20(12): e3001951, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36577117

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pbio.3000923.].

4.
Anal Chem ; 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38221749

ABSTRACT

Although various oxidase mimetic or peroxidase (POD) mimetic nanozymes have been extensively studied, their poor substrate selectivity significantly inhibits their practical applications. Nanozymes with specific biomolecules as substrates, especially ascorbic acid oxidase (AAO) mimetic nanozymes with ascorbic acid (AA) as a substrate, have scarcely been studied. Herein, inspired by the multi-Cu atom sites and the redox electron transfer pathway of Cu2+/Cu+ in the natural AAO, atomically dispersed Cu sites immobilized on N-doped porous carbon (Cu-N/C) are artificially designed to simulate the function of natural AAO. Compared with their natural counterparts, the Cu-N/C catalysts exhibited higher catalytic efficiency and superior stability. Combined theoretical calculation and experimental characterizations reveal that the Cu-N/C nanozymes could catalyze the AA oxidation through a 2e- oxygen reduction pathway with H2O2 as the product. Moreover, the Cu-N/C nanozymes also possess high POD activity. As a proof-of-concept application, Cu-N/C can simultaneously realize AA detection in fluorescent mode based on its AAO activity and total antioxidant capacity detection in colorimetric mode utilizing its POD activity.

5.
Respir Res ; 25(1): 119, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459541

ABSTRACT

BACKGROUND: The pattern recognition receptor Dectin-1 was initially discovered to play a pivotal role in mediating pulmonary antifungal immunity and promoting neutrophil-driven inflammation. Recent studies have revealed that Dectin-1 is overexpressed in asthma, but the specific mechanism remains elusive. Additionally, Dectin-1 has been implicated in promoting pyroptosis, a hallmark of severe asthma airway inflammation. Nevertheless, the involvement of the non-classical pyroptosis signal caspase-11/4 and its upstream regulatory mechanisms in asthma has not been completely explored. METHODS: House dust mite (HDM)-induced mice was treated with Dectin-1 agonist Curdlan, Dectin-1 inhibitor Laminarin, and caspase-11 inhibitor wedelolactone separately. Subsequently, inflammatory cells in bronchoalveolar lavage fluid (BALF) were analyzed. Western blotting was performed to measure the protein expression of caspase-11 and gasdermin D (GSDMD). Cell pyroptosis and the expression of chemokine were detected in vitro. The correlation between Dectin-1 expression, pyroptosis factors and neutrophils in the induced sputum of asthma patients was analyzed. RESULTS: Curdlan appeared to exacerbate neutrophil airway inflammation in asthmatic mice, whereas wedelolactone effectively alleviated airway inflammation aggravated by Curdlan. Moreover, Curdlan enhanced the release of caspase-11 activation fragments and N-terminal fragments of gasdermin D (GSDMD-N) stimulated by HDM both in vivo or in vitro. In mouse alveolar macrophages (MH-S cells), Curdlan/HDM stimulation resulted in vacuolar degeneration and elevated lactate dehydrogenase (LDH) release. In addition, there was an upregulation of neutrophil chemokines CXCL1, CXCL3, CXCL5 and their receptor CXCR2, which was suppressed by wedelolactone. In asthma patients, a positive correlation was observed between the expression of Dectin-1 on macrophages and caspase-4 (the human homology of caspase-11), and the proportion of neutrophils in induced sputum. CONCLUSION: Dectin-1 activation in asthma induced caspase-11/4 mediated macrophage pyroptosis, which subsequently stimulated the secretion of chemokines, leading to the exacerbation of airway neutrophil inflammation.


Subject(s)
Asthma , Lectins, C-Type , Neutrophils , Animals , Humans , Mice , Asthma/metabolism , Caspases/metabolism , Chemokines/metabolism , Gasdermins , Inflammation/metabolism , Lung/metabolism , Macrophages/metabolism , Neutrophils/metabolism , Pyroglyphidae , Pyroptosis
6.
Eur J Nucl Med Mol Imaging ; 51(9): 2794-2805, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38658392

ABSTRACT

PURPOSE: Prostate-specific membrane antigen (PSMA) is a promising target for diagnosis and radioligand therapy (RLT) of prostate cancer. Two novel PSMA-targeting radionuclide therapy agents, [177Lu]Lu-P17-087, and its albumin binder modified derivative, [177Lu]Lu-P17-088, were evaluated in metastatic castration-resistant prostate cancer (mCRPC) patients. The primary endpoint was dosimetry evaluation, the second endpoint was radiation toxicity assessment (CTCAE 5.0) and PSA response (PCWG3). METHODS: Patients with PSMA-positive tumors were enrolled after [68Ga]Ga-PSMA-11 PET/CT scan. Five mCRPC patients received [177Lu]Lu-P17-087 and four other patients received [177Lu]Lu-P17-088 (1.2 GBq/patient). Multiple whole body planar scintigraphy was performed at 1.5, 4, 24, 48, 72, 120 and 168 h after injection and one SPECT/CT imaging was performed at 24 h post-injection for each patient. Dosimetry evaluation was compared in both patient groups. RESULTS: Patients showed no major clinical side-effects under this low dose treatment. As expected [177Lu]Lu-P17-088 with longer blood circulation (due to its albumin binding) exhibited higher effective doses than [177Lu]Lu-P17-087 (0.151 ± 0.036 vs. 0.056 ± 0.019 mGy/MBq, P = 0.001). Similarly, red marrow received 0.119 ± 0.068 and 0.048 ± 0.020 mGy/MBq, while kidney doses were 0.119 ± 0.068 and 0.046 ± 0.022 mGy/MBq, respectively. [177Lu]Lu-P17-087 demonstrated excellent tumor uptake and faster kinetics; while [177Lu]Lu-P17-088 displayed a slower washout and higher average dose (7.75 ± 4.18 vs. 4.72 ± 2.29 mGy/MBq, P = 0.018). After administration of [177Lu]Lu-P17-087 and [177Lu]Lu-P17-088, 3/5 and 3/4 patients showed reducing PSA values, respectively. CONCLUSION: [177Lu]Lu-P17-088 and [177Lu]Lu-P17-087 displayed different pharmacokinetics but excellent PSMA-targeting dose delivery in mCRPC patients. These two agents are promising RLT agents for personalized treatment of mCRPC. Further studies with increased dose and frequency of RLT are warranted to evaluate the potential therapeutic efficacy. TRIAL REGISTRATION: 177Lu-P17-087/177Lu-P17-088 in Patients with Metastatic Castration-resistant Prostate Cancer (NCT05603559, Registered at 25 October, 2022). URL OF REGISTRY: https://classic. CLINICALTRIALS: gov/ct2/show/NCT05603559 .


Subject(s)
Antigens, Surface , Glutamate Carboxypeptidase II , Lutetium , Neoplasm Metastasis , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Aged , Glutamate Carboxypeptidase II/metabolism , Lutetium/therapeutic use , Antigens, Surface/metabolism , Middle Aged , Albumins , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacokinetics , Aged, 80 and over , Radioisotopes/therapeutic use , Radiometry
7.
Chemistry ; 30(32): e202400899, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38576216

ABSTRACT

An amphiphilic aza-BODIPY dye (S)-1 bearing two chiral hydrophilic side chains with S-stereogenic centers was synthesized. This dye exhibited kinetic-controlled self-assembly pathways and supramolecular chiral polymorphism properties in MeOH/H2O (9/1, v/v) mixed solvent. The (S)-1 monomers first aggregated into a kinetic controlled, off-pathway species Agg. A, which was spontaneously transformed into an on-pathway metastable aggregate (Agg. B) and subsequently into the thermodynamic Agg. C. The three aggregate polymorphs of dye (S)-1 displayed distinct optical properties and nanomorphologies. In particular, chiral J-aggregation characteristics were observed for both Agg. B and Agg. C, such as Davydov-split absorption bands (Agg. B), extremely sharp and intense J-band with large bathochromic shift (Agg. C), non-diminished fluorescence upon aggregation, as well as strong bisignated Cotton effects. Moreover, the AFM and TEM studies revealed that Agg. A had the morphology of nanoparticle while fibril or rod-like helical nanostructures with left-handedness were observed respectively for Agg. B and Agg. C. By controlling the kinetic transformation process from Agg. B to Agg. C, thin films consisting of Agg. B and Agg. C with different ratios were prepared, which displayed tunable CPL with emission maxima at 788-805 nm and g-factors between -4.2×10-2 and -5.1×10-2.

8.
PLoS Biol ; 19(9): e3000923, 2021 09.
Article in English | MEDLINE | ID: mdl-34499636

ABSTRACT

Current approaches to high-field functional MRI (fMRI) provide 2 means to map hemodynamics at the level of single vessels in the brain. One is through changes in deoxyhemoglobin in venules, i.e., blood oxygenation level-dependent (BOLD) fMRI, while the second is through changes in arteriole diameter, i.e., cerebral blood volume (CBV) fMRI. Here, we introduce cerebral blood flow-related velocity-based fMRI, denoted CBFv-fMRI, which uses high-resolution phase contrast (PC) MRI to form velocity measurements of flow. We use CBFv-fMRI in measure changes in blood velocity in single penetrating microvessels across rat parietal cortex. In contrast to the venule-dominated BOLD and arteriole-dominated CBV fMRI signals, CBFv-fMRI is comparable from both arterioles and venules. A single fMRI platform is used to map changes in blood pO2 (BOLD), volume (CBV), and velocity (CBFv). This combined high-resolution single-vessel fMRI mapping scheme enables vessel-specific hemodynamic mapping in animal models of normal and diseased states and further has translational potential to map vascular dementia in diseased or injured human brains with ultra-high-field fMRI.


Subject(s)
Blood Flow Velocity , Cerebrovascular Circulation , Magnetic Resonance Imaging/methods , Animals , Brain/blood supply , Male , Oxygen/blood , Rats, Sprague-Dawley
9.
Langmuir ; 40(23): 12078-12088, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38805683

ABSTRACT

Oily wastewater has caused serious threats to the environment; thus, high-performance absorbing materials for effective oil-water separation technology have attracted increasing attention. Herein, we develop a magnetic, hydrophobic, and lipophilic hyperporous elastic material (HEM) templated by high internal phase emulsions (HIPE), in which free-radical polymerization of butyl acrylate (BA) and divinylbenzene (DVB) is employed in the presence of poly(dimethylsiloxane) (PDMS), lecithin surfactant, and modified Fe3O4 nanoparticles. The adoption of the emulsion template with nanoparticles as both stabilizers and cross-linkers endows the HEM with biomimetic hierarchical open-cell micropores and elastic cross-linked networks, generating an oil absorbent with outstanding mechanical stability. Compressive fatigue resistance of the HEM is demonstrated to endure 2000 mechanical cycles without plastic deformation or strength degradation. By exploiting the synergistic effect of hierarchical structures and low-surface-energy components, the resulting HEM also possesses excellent and robust hydrophobicity (water contact angle of 164°) and good oil absorption capacity, in which Fe3O4 nanoparticles lead to convenient magnetically controlled oil recyclability as well. Notably, the unique biomimetic microporous structure demonstrates superior oil retention capacity (>95% at 1000 rpm and >60% at 10,000 rpm) over the state-of-the-art porous materials for a diverse variety of oils to reduce the risk of secondary oil leakage, along with good recoverability by squeezing owing to the excellent compression resilience. These excellent performances of our HEM provide broad prospects for practical applications in oil-water separation, energy conversion, and smart soft robotics.

10.
Org Biomol Chem ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934561

ABSTRACT

Sialyl Lewisa (sLea), also known as cancer antigen 19-9, is a tumor-associated carbohydrate antigen. In this article, chemical and chemoenzymatic syntheses of a tetrasaccharide glycan 1 structurally derived from sLea are reported. Challenges involved in the chemical synthesis include the highly stereoselective construction of 1,2-cis-α-L-fucoside and α-D-sialoside, as well as the assembly of the 3,4-disubstituted N-acetylglucosamine subunit. Perbenzylated thiofucoside and N-acetyl-5-N,4-O-oxazolidinone protected sialic acid thioglycoside were employed as glycosyl donors, respectively, for the efficient preparation of the desired α-fucoside and α-sialoside. The 3,4-branched glucosamine backbone was established through a 3-O and then 4-O glycosylation sequence in which the 3-hydroxyl group of the glucosamine moiety was glycosylated first and then the 4-hydroxyl. A facile chemoenzymatic approach was also exploited to synthesize the target molecule. The chemically obtained free disaccharide 30 was sequentially sialylated and fucosylated in an enzyme-catalyzed regio- and stereospecific manner to form 1 in high yields. The linker appended 1 can be covalently attached to a carrier protein for further immunological studies.

11.
Pediatr Nephrol ; 39(8): 2403-2412, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38578470

ABSTRACT

BACKGROUND: Previously, several studies have indicated that pediatric IgA nephropathy (IgAN) might be different from adult IgAN, and treatment strategies might be also different between pediatric IgAN and adult IgAN. METHODS: We analyzed two prospective cohorts established by pediatric and adult nephrologists, respectively. A comprehensive analysis was performed investigating the difference in clinical and pathological characteristics, treatment, and prognosis between children and adults with IgAN. RESULTS: A total of 1015 children and 1911 adults with IgAN were eligible for analysis. More frequent gross hematuria (88% vs. 20%, p < 0.0001) and higher proteinuria (1.8 vs. 1.3 g/d, p < 0.0001) were seen in children compared to adults. In comparison, the estimated glomerular filtration rate (eGFR) was lower in adults (80.4 vs. 163 ml/min/1.73 m2, p < 0.0001). Hypertension was more prevalent in adult patients. Pathologically, a higher proportion of M1 was revealed (62% vs. 39%, p < 0.0001) in children than in adults. S1 (62% vs. 28%, p < 0.0001) and T1-2 (34% vs. 8%, p < 0.0001) were more frequent in adults. Adjusted by proteinuria, eGFR, and hypertension, children were more likely to be treated with glucocorticoids than adults (87% vs. 45%, p < 0.0001). After propensity score matching, in IgAN with proteinuria > 1 g/d, children treated with steroids were 1.87 (95% CI 1.16-3.02, p = 0.01) times more likely to reach complete remission of proteinuria compared with adults treated with steroids. CONCLUSIONS: Children present significantly differently from adults with IgAN in clinical and pathological manifestations and disease progression. Steroid response might be better in children.


Subject(s)
Glomerular Filtration Rate , Glomerulonephritis, IGA , Proteinuria , Humans , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/physiopathology , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/complications , Glomerulonephritis, IGA/therapy , Male , Female , Child , Adult , Proteinuria/etiology , Proteinuria/diagnosis , Adolescent , Prospective Studies , Young Adult , Prognosis , Middle Aged , Age Factors , Hematuria/etiology , Hematuria/diagnosis , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/diagnosis , Kidney/pathology , Kidney/physiopathology , Disease Progression , Glucocorticoids/therapeutic use
12.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33986115

ABSTRACT

Whole-genome duplication (WGD) plays important roles in plant evolution and function, yet little is known about how WGD underlies metabolic diversification of natural products that bear significant medicinal properties, especially in nonmodel trees. Here, we reveal how WGD laid the foundation for co-option and differentiation of medicinally important ursane triterpene pathway duplicates, generating distinct chemotypes between species and between developmental stages in the apple tribe. After generating chromosome-level assemblies of a widely cultivated loquat variety and Gillenia trifoliata, we define differentially evolved, duplicated gene pathways and date the WGD in the apple tribe at 13.5 to 27.1 Mya, much more recent than previously thought. We then functionally characterize contrasting metabolic pathways responsible for major triterpene biosynthesis in G. trifoliata and loquat, which pre- and postdate the Maleae WGD, respectively. Our work mechanistically details the metabolic diversity that arose post-WGD and provides insights into the genomic basis of medicinal properties of loquat, which has been used in both traditional and modern medicines.


Subject(s)
Eriobotrya/genetics , Gene Duplication , Polyploidy , Triterpenes/metabolism , Biosynthetic Pathways , Eriobotrya/metabolism , Genome, Plant
13.
Plant Dis ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853332

ABSTRACT

Nanhaia speciosa, commonly known as Niudali, is a medicinal woody vine belonging to the Leguminosae family. Valued for its culinary and medicinal properties, it is extensively cultivated, covering approximately 5,973 hm2 in the Guangxi Zhuang Autonomous Region of China. The edible tubers of this plant are reported to possess antibacterial and antioxidant effects (Luo et al., 2023; Shu et al., 2020). In July 2021, a Niudali plantation in Yulin, Guangxi, China (22°64'N; 110°29'E) exhibited leaf spot symptoms, with an incidence rate exceeding 40% across a 46,690 m2 area. Initially, small circular, pale yellow spots appeared on the leaves, which subsequently evolved into dark brown lesions surrounded by yellow halos, ultimately leading to foliage wilting. Leaves exhibiting typical symptoms were collected for pathogen investigation. The leaves were thoroughly washed with sterile water and small tissue fragments (5×5 mm) were excised from the lesion periphery. These fragments were surface-sterilized with 75% ethanol and 1% NaClO, rinsed three times with sterile water, and subsequently cultured on potato dextrose agar (PDA) at 28 °C in darkness for 7 days. Through single-spore isolation, seven isolates with similar morphological traits were obtained. After 7 days of incubation on PDA at 28 °C in dark, the colonies exhibited a white to grey coloration on the upper surface with abundant aerial hyphae, while the underside appeared dark black. The conidia, cylindrical or obclavate in shape, were straight, pale brown, and measured 30.1-128.9 µm × 4.8-15.0 µm (n=50). The morphological characteristics matched those of Corynespora sp.(Wang et al. 2021). For molecular identification, the isolate N5-2 underwent DNA sequence analysis using genomic DNA and primers ITS1/ITS4 and EF1-688F/EF1-1251R. The sequences (ITS: OP550425; TEF1-α: OQ117118) were deposited in GenBank, exhibiting 98% identity to C. cassiicola (OP981637) for TEF1-α and 99% homology to C. cassiicola (OP957070) for ITS. Based on the concatenated ITS and TEF1-α, a maximum likelihood phylogenetic analyses using MEGA7.0 clustered the isolate with C. cassiicola. Consequently, the fungus was identified as C. cassiicola based on its morphological and molecular features. In the pathogenicity test on 1-year-old Nanhaia speciosa seedlings, leaves were gently scratched and inoculated with mycelial plugs (5 mm). Control seedlings received PDA plugs. Five leaves per plant and five plants per treatment were selected for assessment. All seedling were maintained in a greenhouse (12/12h light/dark cycle, 25 ± 2°C, 90% humidity). After a 7-day incubation period, all leaves subjected to fungal inoculation exhibited symptoms consistent with those observed in the field, while control plants remained symptom-free. The fungus was successfully reisolated from the infected leaves in three successive trials, fulfilling Koch's postulates. While C. cassiicola is well-documented for inducing leaf spots on various plant species, including Jasminum nudiflorum, Strobilanthes cusia, Acanthus ilicifolius, Syringa species (Hu et al., 2023; Liu et al., 2023; Xie et al., 2021; Wang et al., 2021), this study represents the first report of C. cassiicola causing leaf spots on Nanhaia speciosa in China. The identification of this pathogen in Nanhaia speciosa has significant implications for future epidemiological investigations and serves as a valuable reference for controlling leaf spot disease in Nanhaia speciosa.

14.
Nano Lett ; 23(4): 1505-1513, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36734468

ABSTRACT

Single-atom catalysts with well-defined atomic structures and precisely regulated coordination environments have been recognized as potential substitutes for natural metalloenzymes. Inspired by the metal coordination structure of natural enzymes, we show here that the oxidase-like activity of single-atom Co catalysts greatly depends on their local N coordination around the Co catalytic sites. We synthesized a series of Co single-atom catalysts with different nitrogen coordination numbers (Co-Nx(C), x = 2, 3, and 4) and demonstrated that the oxidase-like activity of single-atom Co catalysts could be effectively tailored by fine-tuning the N coordination. Among the studied single-atom Co catalysts, the Co-N3(C) with three-coordinate N atoms shows the optimum oxygen adsorption structure and robust reactive oxygen species (ROS) generation, thus presenting the preferable oxidase-like catalytic activity. This work facilitates the future development of rational nanozyme designs for targeting reactions at the atomic level.


Subject(s)
Nitrogen , Oxidoreductases , Adsorption , Oxygen , Reactive Oxygen Species
15.
BMC Nurs ; 23(1): 194, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520023

ABSTRACT

OBJECTIVE: This study aims to investigate the relationship between psychological resilience, thriving at work, and work performance among nurses, as well as analyse the mediating role of thriving at work in the relationship between psychological resilience and the work performance of nurses. The findings are intended to serve as a reference for nursing managers to design tailored work performance intervention programs. METHOD: Using convenience sampling, 308 clinical nurses were selected from a tertiary hospital in Changsha City, Hunan Province, China, from February to April 2023. The Connor-Davidson Resilience Scale (CD-RISC), the Thriving at Work Scale, and the Work Performance Scale were employed for the questionnaire survey. Pearson correlation analysis was used to explore the relationship between psychological resilience, thriving at work and work performance. The SPSS 26.0 software's 'Process' plugin was utilised for mediation effect analysis. RESULTS: Significantly positive correlations were found between psychological resilience and thriving at work (r = 0.806, P < 0.01), thriving at work and work performance (r = 0.571, P < 0.01) as well as psychological resilience and work performance (r = 0.572, P < 0.01). Psychological resilience significantly predicted work performance positively (ß = 0.558, t = 11.165, P < 0.01), and this prediction remained significant when thriving at work (the mediating variable), was introduced (ß = 0.371, t = 4.772, P < 0.01). Psychological resilience significantly predicted thriving at work positively (ß = 0.731, t = 20.779, P < 0.01), and thriving at work significantly predicted work performance positively (ß = 0.256, t = 3.105, P < 0.05). The mediating effect size of thriving at work between psychological resilience and work performance was 33.49% (P < 0.05). CONCLUSION: Thriving at work plays a partial mediating role between psychological resilience and work performance. The level of work performance among clinical nurses was relatively high. Nursing managers can enhance thriving at work by fostering psychological resilience among clinical nurses, thereby further improving their work performance to ensure high-quality and efficient nursing care.

16.
Angew Chem Int Ed Engl ; 63(3): e202313791, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38050643

ABSTRACT

The blend nanomorphology of electron-donor (D) and -acceptor (A) materials is of vital importance to achieving highly efficient organic solar cells. Exogenous additives especially aromatic additives are always needed to further optimize the nanomorphology of blend films, which is hardly compatible with industrial manufacture. Herein, we proposed a unique approach to meticulously modulate the aggregation behavior of NFAs in both crystal and thin film nanomorphology via self-regulation effect. Nonfullerene acceptor Z9 was designed and synthesized by tethering phenyl groups on the inner side chains of the Y6 backbone. Compared with Y6, the tethered phenyl groups participated in the molecular aggregation via the π-π stacking of phenyl-phenyl and phenyl-2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC-2F) groups, which induced 3D charge transport with phenyl-mediated super-exchange electron coupling. Moreover, ordered molecular packing with suitable phase separation was observed in Z9-based blend films. High power conversion efficiencies (PCEs) of 19.0 % (certified PCE of 18.6 %) for Z9-based devices were achieved without additives, indicating the great potential of the self-regulation strategy in NFA design.

17.
Small ; 19(40): e2301740, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37312611

ABSTRACT

In this work, a series of Mo-containing polyoxometalates (POMs) modified separators to inhibit the growth of lithium dendrites, and thus improving the lifespan and safety of the cells is proposed. When the deposited lithium forms dendrites and touches the separator, the optimized Dawson-type POM of (NH4 )6 [P2 Mo18 O62 ]·11H2 O (P2 Mo18 ) with the stronger oxidizability, acts like a "killer", is more inclined to oxidize Li0 into Li+ , thus weakening the lethality of lithium dendrites. The above process is accompanied by the formation of Lix [P2 Mo18 O62 ] (x = 6-10) in its reduced state. Converting to the stripping process, the reduced state Lix [P2 Mo18 O62 ] (x = 6-10) can be reoxidized to P2 Mo18 , which achieves the reusability of P2 Mo18 functional material. Meanwhile, lithium ions are released into the cell system to participate in the subsequent electrochemical cycles, thus the undesired lithium dendrites are converted into usable lithium ions to prevent the generation of "dead lithium". As a result, the Li//Li symmetrical cell with P2 Mo18 modified separator delivers exceptional cyclic stability for over 1000 h at 3 mA cm-2 and 5 mAh cm-2 , and the assembled Li-S full cell maintains superior reversible capacity of 600 mAh g-1 after 200 cycles at 2 C.

18.
Phys Rev Lett ; 130(21): 216702, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37295086

ABSTRACT

Ferromagnets are known to support spin-polarized currents that control various spin-dependent transport phenomena useful for spintronics. On the contrary, fully compensated antiferromagnets are expected to support only globally spin-neutral currents. Here, we demonstrate that these globally spin-neutral currents can represent the Néel spin currents, i.e., staggered spin currents flowing through different magnetic sublattices. The Néel spin currents emerge in antiferromagnets with strong intrasublattice coupling (hopping) and drive the spin-dependent transport phenomena such as tunneling magnetoresistance (TMR) and spin-transfer torque (STT) in antiferromagnetic tunnel junctions (AFMTJs). Using RuO_{2} and Fe_{4}GeTe_{2} as representative antiferromagnets, we predict that the Néel spin currents with a strong staggered spin polarization produce a sizable fieldlike STT capable of the deterministic switching of the Néel vector in the associated AFMTJs. Our work uncovers the previously unexplored potential of fully compensated antiferromagnets and paves a new route to realize the efficient writing and reading of information for antiferromagnetic spintronics.

19.
BMC Neurol ; 23(1): 60, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36739373

ABSTRACT

BACKGROUND: Anxiety disorder is a common non-motor symptom among individuals with Parkinson's disease (PD). At present, there are no specific tools in China for assessing the anxiety level of patients with PD. This study aimed to test the reliability and validity of the Chinese version of the Parkinson Anxiety Scale (C-PAS) in Chinese patients with PD. METHODS: A total of 158 patients with PD at one hospital in Nanjing were recruited through convenience sampling. The C-PAS was translated into Chinese using a classic 'forward-backward' translation method. Reliability tests included internal consistency and test-reliability. And in addition to content, structure and criterion-related validity were performed for the validity tests. Criterion-related validity was evaluated with the Hospital Anxiety and Depression Scale-Anxiety Subscale (HADS-A). RESULTS: Results confirmed the three-factor structure of the original C-PAS with 12 items, including persistent anxiety (5 items), episodic anxiety (4 items) and avoidance behavior (3 items). Significant and positive correlations were obtained between C-PAS and HADS-A (r = 0.82, P<0.01). The Cronbach's α and test-retest reliability of the total scale were 0.89 and 0.84, respectively. CONCLUSION: The C-PAS has demonstrated good psychometric properties. Therefore, it can be employed in patients with PD to evaluate the condition of anxiety.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnosis , Psychometrics/methods , Reproducibility of Results , Surveys and Questionnaires , Anxiety/diagnosis , Anxiety/etiology , China/epidemiology
20.
Environ Sci Technol ; 57(26): 9603-9614, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37342920

ABSTRACT

Tetracycline pollution in soil irreversibly damages the biosafety of plants by inhibiting the mitochondrial function. Some traditional Chinese medicine (TCM) plants, such as Salvia miltiorrhiza Bunge, have a strong tolerance to mitochondrial damage. We comprehensively compared the doxycycline (DOX) tolerances of two ecotypes of S. miltiorrhiza in the Sichuan and Shandong provinces and found that the Sichuan ecotype had a lower yield reduction, more stable accumulation of medicinal ingredients, higher mitochondrial integrity, and a more robust antioxidant system. The synergetic response networks under DOX pollution of both ecotypes were constructed using RNA sequencing and ultrahigh-performance liquid chromatography-tandem mass spectrometry. The differentiation of the downstream pathways of aromatic amino acids (AAAs) produced variations in the DOX tolerance of S. miltiorrhiza in different regions. The Sichuan ecotype maintained redox homeostasis and xylem development by activating salvianolic acid and indole biosynthesis, while the Shandong ecotype balanced chemical and mechanical defenses by regulating the flavonoid biosynthesis. Rosmarinic acid, a downstream AAA molecule, maintains the mitochondrial homeostasis of plant seedlings under DOX pollution by targeting the ABCG28 transporter. We also highlight the significance of downstream AAA small molecules in guiding the development of bio-based environmental pollution remediation agents.


Subject(s)
Salvia miltiorrhiza , Salvia miltiorrhiza/chemistry , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Doxycycline/pharmacology , Doxycycline/analysis , Doxycycline/metabolism , Ecotype , Multiomics , Environmental Pollution , Plant Roots/chemistry , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL