Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(8): 2212-2228.e12, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33713620

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause acute respiratory disease and multiorgan failure. Finding human host factors that are essential for SARS-CoV-2 infection could facilitate the formulation of treatment strategies. Using a human kidney cell line-HK-2-that is highly susceptible to SARS-CoV-2, we performed a genome-wide RNAi screen and identified virus dependency factors (VDFs), which play regulatory roles in biological pathways linked to clinical manifestations of SARS-CoV-2 infection. We found a role for a secretory form of SARS-CoV-2 receptor, soluble angiotensin converting enzyme 2 (sACE2), in SARS-CoV-2 infection. Further investigation revealed that SARS-CoV-2 exploits receptor-mediated endocytosis through interaction between its spike with sACE2 or sACE2-vasopressin via AT1 or AVPR1B, respectively. Our identification of VDFs and the regulatory effect of sACE2 on SARS-CoV-2 infection shed insight into pathogenesis and cell entry mechanisms of SARS-CoV-2 as well as potential treatment strategies for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Host Microbial Interactions/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vasopressins/immunology , Virus Internalization , COVID-19/immunology , COVID-19/virology , Cell Line , Humans , Protein Binding
3.
Nature ; 609(7928): 785-792, 2022 09.
Article in English | MEDLINE | ID: mdl-35922005

ABSTRACT

Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.


Subject(s)
Aspartic Acid , Caspase 6 , Coronavirus Infections , Coronavirus , Cysteine , Host-Pathogen Interactions , Virus Replication , Animals , Apoptosis , Aspartic Acid/metabolism , Caspase 6/metabolism , Coronavirus/growth & development , Coronavirus/pathogenicity , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Cricetinae , Cysteine/metabolism , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Humans , Interferons/antagonists & inhibitors , Interferons/immunology , Lung/pathology , Mesocricetus , Mice , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Survival Rate , Weight Loss
4.
Nature ; 593(7859): 418-423, 2021 05.
Article in English | MEDLINE | ID: mdl-33727703

ABSTRACT

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Subject(s)
Antiviral Agents/pharmacology , Clofazimine/pharmacology , Coronavirus/classification , Coronavirus/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Biological Availability , Cell Fusion , Cell Line , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Coronavirus/growth & development , Coronavirus/pathogenicity , Cricetinae , DNA Helicases/antagonists & inhibitors , Drug Synergism , Female , Humans , Life Cycle Stages/drug effects , Male , Mesocricetus , Pre-Exposure Prophylaxis , SARS-CoV-2/growth & development , Species Specificity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
5.
PLoS Pathog ; 19(2): e1011186, 2023 02.
Article in English | MEDLINE | ID: mdl-36802409

ABSTRACT

Epstein-Barr virus (EBV) has developed effective strategies to evade host innate immune responses. Here we reported on mitigation of type I interferon (IFN) production by EBV deubiquitinase (DUB) BPLF1 through cGAS-STING and RIG-I-MAVS pathways. The two naturally occurring forms of BPLF1 exerted potent suppressive effect on cGAS-STING-, RIG-I- and TBK1-induced IFN production. The observed suppression was reversed when DUB domain of BPLF1 was rendered catalytically inactive. The DUB activity of BPLF1 also facilitated EBV infection by counteracting cGAS-STING- and TBK1-mediated antiviral defense. BPLF1 associated with STING to act as an effective DUB targeting its K63-, K48- and K27-linked ubiquitin moieties. BPLF1 also catalyzed removal of K63- and K48-linked ubiquitin chains on TBK1 kinase. The DUB activity of BPLF1 was required for its suppression of TBK1-induced IRF3 dimerization. Importantly, in cells stably carrying EBV genome that encodes a catalytically inactive BPLF1, the virus failed to suppress type I IFN production upon activation of cGAS and STING. This study demonstrated IFN antagonism of BPLF1 mediated through DUB-dependent deubiquitination of STING and TBK1 leading to suppression of cGAS-STING and RIG-I-MAVS signaling.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , DEAD Box Protein 58 , Deubiquitinating Enzymes , Epstein-Barr Virus Infections/metabolism , Herpesvirus 4, Human/metabolism , Immunity, Innate , Nucleotidyltransferases/metabolism , Ubiquitin
6.
RNA ; 28(4): 449-477, 2022 04.
Article in English | MEDLINE | ID: mdl-35031583

ABSTRACT

Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.


Subject(s)
Antiviral Restriction Factors , Immunity, Innate , Interferons , RNA-Binding Proteins , Antiviral Restriction Factors/immunology , Cytoplasm , DEAD Box Protein 58/metabolism , Interferons/metabolism , RNA, Viral/genetics , RNA-Binding Proteins/metabolism
7.
J Med Virol ; 95(1): e28326, 2023 01.
Article in English | MEDLINE | ID: mdl-36411262

ABSTRACT

The initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants, BA.1 and BA.2, are being progressively displaced by BA.5 in many countries. To provide insight on the replacement of BA.2 by BA.5 as the dominant SARS-CoV-2 variant, we performed a comparative analysis of Omicron BA.2.12.1 and BA.5.2 variants in cell culture and hamster models. We found that BA.5.2 exhibited enhanced replicative kinetics over BA.2.12.1 in vitro and in vivo, which is evidenced by the dominant BA.5.2 viral genome detected at different time points, regardless of immune selection pressure with vaccine-induced serum antibodies. Utilizing reverse genetics, we constructed a mutant SARS-CoV-2 carrying spike F486V substitution, which is an uncharacterized mutation that concurrently discriminates Omicron BA.5.2 from BA.2.12.1 variant. We noticed that the 486th residue does not confer viral replication advantage to the virus. We also found that 486V displayed generally reduced immune evasion capacity when compared with its predecessor, 486F. However, the surge of fitness in BA.5.2 over BA.2.12.1 was not due to stand-alone F486V substitution but as a result of the combination of multiple mutations. Our study upholds the urgency for continuous monitoring of SARS-CoV-2 Omicron variants with enhanced replication fitness.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , Cell Culture Techniques , Genome, Viral , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral , Antibodies, Neutralizing
8.
Clin Infect Dis ; 74(11): 1933-1950, 2022 06 10.
Article in English | MEDLINE | ID: mdl-34406358

ABSTRACT

BACKGROUND: Post-vaccination myopericarditis is reported after immunization with coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccines. The effect of inadvertent intravenous injection of this vaccine on the heart is unknown. METHODS: We compared the clinical manifestations, histopathological changes, tissue mRNA expression, and serum levels of cytokine/chemokine and troponin in Balb/c mice at different time points after intravenous (IV) or intramuscular (IM) vaccine injection with normal saline (NS) control. RESULTS: Although significant weight loss and higher serum cytokine/chemokine levels were found in IM group at 1-2 days post-injection (dpi), only IV group developed histopathological changes of myopericarditis as evidenced by cardiomyocyte degeneration, apoptosis, and necrosis with adjacent inflammatory cell infiltration and calcific deposits on visceral pericardium, although evidence of coronary artery or other cardiac pathologies was absent. Serum troponin level was significantly higher in IV group. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike antigen expression by immunostaining was occasionally found in infiltrating immune cells of the heart or injection site, in cardiomyocytes and intracardiac vascular endothelial cells, but not skeletal myocytes. The histological changes of myopericarditis after the first IV-priming dose persisted for 2 weeks and were markedly aggravated by a second IM- or IV-booster dose. Cardiac tissue mRNA expression of interleukin (IL)-1ß, interferon (IFN)-ß, IL-6, and tumor necrosis factor (TNF)-α increased significantly from 1 dpi to 2 dpi in the IV group but not the IM group, compatible with presence of myopericarditis in the IV group. Ballooning degeneration of hepatocytes was consistently found in the IV group. All other organs appeared normal. CONCLUSIONS: This study provided in vivo evidence that inadvertent intravenous injection of COVID-19 mRNA vaccines may induce myopericarditis. Brief withdrawal of syringe plunger to exclude blood aspiration may be one possible way to reduce such risk.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Chemokines , Cytokines , Endothelial Cells , Humans , Injections, Intravenous , Mice , RNA, Messenger , SARS-CoV-2 , Troponin , Vaccines, Synthetic , mRNA Vaccines
9.
Clin Infect Dis ; 75(1): e822-e826, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34915551

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant, designated as a variant of concern by the World Health Organization, carries numerous spike mutations that are known to evade neutralizing antibodies elicited by coronavirus disease 2019 (COVID-19) vaccines. A deeper understanding of the susceptibility of omicron variant to vaccine-induced neutralizing antibodies is urgently needed for risk assessment. METHODS: Omicron variant strains HKU691 and HKU344-R346K were isolated from patients using TMPRSS2-overexpressing VeroE6 cells. Whole genome sequence was determined using nanopore sequencing. Neutralization susceptibility of ancestral lineage A virus and the omicron, delta and beta variants to sera from 25 BNT162b2 and 25 CoronaVac vaccine recipients was determined using a live virus microneutralization assay. RESULTS: The omicron variant strain HKU344-R346K has an additional spike R346K mutation, which is present in 8.5% of strains deposited in the GISAID database. Only 20% and 24% of BNT162b2 recipients had detectable neutralizing antibody against the omicron variant HKU691 and HKU344-R346K, respectively, whereas none of the CoronaVac recipients had detectable neutralizing antibody titer against either omicron isolate. For BNT162b2 recipients, the geometric mean neutralization antibody titers (GMTs) of the omicron variant isolates (5.43 and 6.42) were 35.7-39.9-fold lower than that of the ancestral virus (229.4), and the GMTs of both omicron variant isolates were significantly lower than those of the beta and delta variants. There was no significant difference in the GMTs between HKU691 and HKU344-R346K. CONCLUSIONS: Omicron variant escapes neutralizing antibodies elicited by BNT162b2 or CoronaVac. The additional R346K mutation did not affect the neutralization susceptibility. Our data suggest that the omicron variant may be associated with lower COVID-19 vaccine effectiveness.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Neutralization Tests , SARS-CoV-2/genetics
10.
Clin Infect Dis ; 74(8): 1485-1488, 2022 04 28.
Article in English | MEDLINE | ID: mdl-34498683

ABSTRACT

A false-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction result can lead to unnecessary public health measures. We report 2 individuals whose respiratory specimens were contaminated by an inactivated SARS-CoV-2 vaccine strain (CoronaVac), likely at vaccination premises. Incidentally, whole genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Vaccination
11.
J Virol ; 95(20): e0102721, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34319780

ABSTRACT

Some lytic proteins encoded by Epstein-Barr virus (EBV) suppress host interferon (IFN) signaling to facilitate viral replication. In this study, we sought to identify and characterize EBV proteins antagonizing IFN signaling. The induction of IFN-stimulated genes (ISGs) by IFN-ß was effectively suppressed by EBV. A functional screen was therefore performed to identify IFN-antagonizing proteins encoded by EBV. EBV tegument protein BGLF2 was identified as a potent suppressor of JAK-STAT signaling. This activity was found to be independent of its stimulatory effect on p38 and JNK pathways. Association of BGLF2 with STAT2 resulted in more pronounced K48-linked polyubiquitination and proteasomal degradation of the latter. Mechanistically, BGLF2 promoted the recruitment of SHP1 phosphatase to STAT1 to inhibit its tyrosine phosphorylation. In addition, BGLF2 associated with cullin 1 E3 ubiquitin ligase to facilitate its recruitment to STAT2. Consequently, BGLF2 suppressed ISG induction by IFN-ß. Furthermore, BGLF2 also suppressed type II and type III IFN signaling, although the suppressive effect on type II IFN response was milder. When pretreated with IFN-ß, host cells became less susceptible to primary infection of EBV. This phenotype was reversed when expression of BGLF2 was enforced. Finally, genetic disruption of BGLF2 in EBV led to more pronounced induction of ISGs. Our study unveils the roles of BGLF2 not only in the subversion of innate IFN response but also in lytic infection and reactivation of EBV. IMPORTANCE Epstein-Barr virus (EBV) is an oncogenic virus associated with the development of lymphoid and epithelial malignancies. EBV has to subvert interferon-mediated host antiviral response to replicate and cause diseases. It is therefore of great interest to identify and characterize interferon-antagonizing proteins produced by EBV. In this study, we perform a screen to search for EBV proteins that suppress the action of interferons. We further show that BGLF2 protein of EBV is particularly strong in this suppression. This is achieved by inhibiting two key proteins STAT1 and STAT2 that mediate the antiviral activity of interferons. BGLF2 recruits a host enzyme to remove the phosphate group from STAT1 thereby inactivating its activity. BGLF2 also redirects STAT2 for degradation. A recombinant virus in which BGLF2 gene has been disrupted can activate host interferon response more robustly. Our findings reveal a novel mechanism by which EBV BGLF2 protein suppresses interferon signaling.


Subject(s)
Epstein-Barr Virus Infections/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Viral Fusion Proteins/metabolism , Herpesvirus 4, Human/metabolism , Host-Pathogen Interactions , Interferons/metabolism , MAP Kinase Signaling System , Phosphorylation , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Signal Transduction , Viral Fusion Proteins/genetics , Virus Replication
12.
PLoS Pathog ; 16(6): e1008611, 2020 06.
Article in English | MEDLINE | ID: mdl-32511263

ABSTRACT

Human infection with avian influenza A (H5N1) and (H7N9) viruses causes severe respiratory diseases. PB1-F2 protein is a critical virulence factor that suppresses early type I interferon response, but the mechanism of its action in relation to high pathogenicity is not well understood. Here we show that PB1-F2 protein of H7N9 virus is a particularly potent suppressor of antiviral signaling through formation of protein aggregates on mitochondria and inhibition of TRIM31-MAVS interaction, leading to prevention of K63-polyubiquitination and aggregation of MAVS. Unaggregated MAVS accumulated on fragmented mitochondria is prone to degradation by both proteasomal and lysosomal pathways. These properties are proprietary to PB1-F2 of H7N9 virus but not shared by its counterpart in WSN virus. A recombinant virus deficient of PB1-F2 of H7N9 induces more interferon ß in infected cells. Our findings reveal a subtype-specific mechanism for destabilization of MAVS and suppression of interferon response by PB1-F2 of H7N9 virus.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Influenza A Virus, H7N9 Subtype/metabolism , Influenza, Human/metabolism , Protein Aggregation, Pathological/metabolism , Signal Transduction , Viral Proteins/metabolism , A549 Cells , Adaptor Proteins, Signal Transducing/genetics , Animals , Dogs , HEK293 Cells , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza, Human/genetics , Influenza, Human/pathology , Interferon-beta/genetics , Interferon-beta/metabolism , Madin Darby Canine Kidney Cells , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Protein Aggregation, Pathological/genetics , THP-1 Cells , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/genetics
13.
J Med Virol ; 94(12): 6078-6090, 2022 12.
Article in English | MEDLINE | ID: mdl-35941087

ABSTRACT

Single-cycle infectious virus can elicit close-to-natural immune response and memory. One approach to generate single-cycle severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is through deletion of structural genes such as spike (S) and nucleocapsid (N). Transcomplementation of the resulting ΔS or ΔN virus through enforced expression of S or N protein in the cells gives rise to a live but unproductive virus. In this study, ΔS and ΔN BAC clones were constructed and their live virions were rescued by transient expression of S and N proteins from the ancestral and the Omicron strains. ΔS and ΔN virions were visualized by transmission electron microscopy. Virion production of ΔS was more efficient than that of ΔN. The coated S protein from ΔS was delivered to infected cells in which the expression of N protein was also robust. In contrast, expression of neither S nor N was detected in ΔN-infected cells. ΔS underwent viral RNA replication, induced type I interferon (IFN) response, but did not form plaques. Despite RNA replication in cells, ΔS infection did not produce viral progeny in culture supernatant. Interestingly, viral RNA replication was not further enhanced upon overexpression of S protein. Taken together, our work provides a versatile platform for development of single-cycle vaccines for SARS-CoV-2.


Subject(s)
COVID-19 , Interferon Type I , COVID-19 Vaccines , Humans , Interferon Type I/genetics , RNA, Viral/genetics , Replicon , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
14.
J Immunol ; 205(6): 1564-1579, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32747502

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus causing severe disease and mortality. MERS-CoV infection failed to elicit robust IFN response, suggesting that the virus might have evolved strategies to evade host innate immune surveillance. In this study, we identified and characterized type I IFN antagonism of MERS-CoV open reading frame (ORF) 8b accessory protein. ORF8b was abundantly expressed in MERS-CoV-infected Huh-7 cells. When ectopically expressed, ORF8b inhibited IRF3-mediated IFN-ß expression induced by Sendai virus and poly(I:C). ORF8b was found to act at a step upstream of IRF3 to impede the interaction between IRF3 kinase IKKε and chaperone protein HSP70, which is required for the activation of IKKε and IRF3. An infection study using recombinant wild-type and ORF8b-deficient MERS-CoV further confirmed the suppressive role of ORF8b in type I IFN induction and its disruption of the colocalization of HSP70 with IKKε. Ectopic expression of HSP70 relieved suppression of IFN-ß expression by ORF8b in an IKKε-dependent manner. Enhancement of IFN-ß induction in cells infected with ORF8b-deficient virus was erased when HSP70 was depleted. Taken together, HSP70 chaperone is important for IKKε activation, and MERS-CoV ORF8b suppresses type I IFN expression by competing with IKKε for interaction with HSP70.


Subject(s)
Enzyme Activation/immunology , I-kappa B Kinase/immunology , Interferon Type I/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Viral Proteins/immunology , Betacoronavirus , COVID-19 , Cell Line , Coronavirus Infections , HSP70 Heat-Shock Proteins/immunology , HSP70 Heat-Shock Proteins/metabolism , Humans , I-kappa B Kinase/metabolism , Interferon Type I/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Pandemics , Pneumonia, Viral , SARS-CoV-2 , Viral Proteins/metabolism
15.
Mol Cell Proteomics ; 19(8): 1303-1309, 2020 08.
Article in English | MEDLINE | ID: mdl-32424026

ABSTRACT

MERS is a life-threatening disease and MERS-CoV has the potential to cause the next pandemic. Protein acetylation is known to play a crucial role in host response to viral infection. Acetylation of viral proteins encoded by other RNA viruses have been reported to affect viral replication. It is therefore of interest to see whether MERS-CoV proteins are also acetylated. Viral proteins obtained from infected cells were trypsin-digested into peptides. Acetylated peptides were enriched by immunoprecipitation and subject to nano-LC-Orbitrap analysis. Bioinformatic analysis was performed to assess the conservation level of identified acetylation sites and to predict the upstream regulatory factors. A total of 12 acetylation sites were identified from 7 peptides, which all belong to the replicase polyprotein pp1ab. All identified acetylation sites were found to be highly conserved across MERS-CoV sequences in NCBI database. Upstream factors, including deacetylases of the SIRT1 and HDAC families as well as acetyltransferases of the TIP60 family, were predicted to be responsible for regulating the acetylation events identified. Western blotting confirms that acetylation events indeed occur on pp1ab protein by expressing NSP4 in HEK293 cells. Acetylation events on MERS-CoV viral protein pp1ab were identified for the first time, which indicate that MERS-CoV might use the host acetylation machinery to regulate its enzyme activity and to achieve optimal replication. Upstream factors were predicted, which might facilitate further analysis of the regulatory mechanism of MERS-CoV replication.


Subject(s)
Lysine/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Viral Proteins/metabolism , Acetylation , HEK293 Cells , Humans
16.
Nucleic Acids Res ; 47(19): 10040-10058, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31428776

ABSTRACT

When proteostasis is disrupted by stresses such as heat shock, the heat stress response will be stimulated, leading to up-regulation of molecular chaperones by transcriptional activation and mRNA stabilization for restoring proteostasis. Although the mechanisms for their transcriptional activation have been clearly defined, how chaperone mRNAs are stabilized remains largely unknown. Starting by exploring the coupling between the apparently unrelated RNA degradation and protein quality control (PQC) systems, we show that the Dis3 ribonuclease, catalytic subunit of the RNA exosome required for RNA degradation, suppresses PQC activity in unstressed cells by degrading mRNAs encoding the Hsp70 cofactors Sis1, Ydj1 and Fes1, as well as some other chaperones or PQC factors, thereby limiting their protein expression. Dis3 is stabilized through its binding to Sis1 and the Hsp70s Ssa1/2. Upon heat stress, loss of Sis1 and Ssa1/2 availability triggers Dis3 ubiquitination and degradation, leading to stabilization of those chaperone mRNAs originally targeted by Dis3. We further demonstrate that polyQ-expanded huntingtin delays Dis3 degradation during heat stress and thus hinders chaperone mRNA stabilization. Our findings not only reveal a post-transcriptional negative feedback loop for maintaining proteostasis, but also uncover a mechanism that contributes to the impaired heat stress response in Huntington's disease.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/genetics , Exosomes/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Protein Processing, Post-Translational/genetics , Feedback, Physiological , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Humans , Huntington Disease/pathology , Intracellular Signaling Peptides and Proteins/genetics , Peptides/genetics , Proteostasis/genetics , RNA Stability/genetics , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
17.
Cancer Cell Int ; 20: 403, 2020.
Article in English | MEDLINE | ID: mdl-32855620

ABSTRACT

BACKGROUND: Long non-coding RNA (lncRNA) BM742401 is a tumor suppressor in gastric cancer and chronic lymphocytic leukemia. As the promoter and coding region of BM742401 are fully embedded in a CpG island, we hypothesized that BM742401 is a tumor suppressor lncRNA epigenetically silenced by promoter DNA methylation in multiple myeloma. METHODS: Methylation-specific PCR and quantitative bisulfite pyrosequencing were performed to detect the methylation of BM742401 in normal plasma cells, myeloma cell lines and primary myeloma samples. The expression of BM742401 was measured by qRT-PCR. The function of BM742401 in multiple myeloma cells was analyzed by lentivirus transduction followed by migration assay. RESULTS: BM742401 methylation was detected in 10 (66.7%) myeloma cell lines but not normal plasma cells, and inversely correlated with expression of BM742401. In primary samples, BM742401 methylation was detected in 3 (12.5%) monoclonal gammopathy of undetermined significance, 9 (15.8%) myeloma at diagnosis and 8 (17.0%) myeloma at relapse/progression. Moreover, BM742401 methylation at diagnosis was associated with inferior overall survival (median OS: 25 vs. 39 months; P = 0.0496). In myeloma cell line JJN-3, stable overexpression of BM742401 by lentivirus transduction resulted in reduced cell migration (P = 0.0001) but not impacting cell death or proliferation. CONCLUSIONS: This is the first report of tumor-specific methylation-mediated silencing of BM742401 in myeloma, which is likely an early event in myelomagenesis with adverse impact on overall survival. Moreover, BM742401 is a tumor suppressor lncRNA by inhibiting myeloma cell migration, hence implicated in myeloma plasma cell homing, metastasis and disease progression.

18.
FASEB J ; 33(8): 8865-8877, 2019 08.
Article in English | MEDLINE | ID: mdl-31034780

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) is capable of inducing a storm of proinflammatory cytokines. In this study, we show that the SARS-CoV open reading frame 3a (ORF3a) accessory protein activates the NLRP3 inflammasome by promoting TNF receptor-associated factor 3 (TRAF3)-mediated ubiquitination of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). SARS-CoV and its ORF3a protein were found to be potent activators of pro-IL-1ß gene transcription and protein maturation, the 2 signals required for activation of the NLRP3 inflammasome. ORF3a induced pro-IL-1ß transcription through activation of NF-κB, which was mediated by TRAF3-dependent ubiquitination and processing of p105. ORF3a-induced elevation of IL-1ß secretion was independent of its ion channel activity or absent in melanoma 2 but required NLRP3, ASC, and TRAF3. ORF3a interacted with TRAF3 and ASC, colocalized with them in discrete punctate structures in the cytoplasm, and facilitated ASC speck formation. TRAF3-dependent K63-linked ubiquitination of ASC was more pronounced in SARS-CoV-infected cells or when ORF3a was expressed. Taken together, our findings reveal a new mechanism by which SARS-CoV ORF3a protein activates NF-κB and the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of p105 and ASC.-Siu, K.-L., Yuen, K.-S., Castaño-Rodriguez, C., Ye, Z.-W., Yeung, M.-L., Fung, S.-Y., Yuan, S., Chan, C.-P., Yuen, K.-Y., Enjuanes, L., Jin, D.-Y. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Ubiquitination , Viral Structural Proteins/metabolism , A549 Cells , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Inflammasomes/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , TNF Receptor-Associated Factor 3/metabolism , Vero Cells
19.
Pharmacol Res ; 159: 104960, 2020 09.
Article in English | MEDLINE | ID: mdl-32473310

ABSTRACT

Coronavirus Disease 2019 (COVID-19) caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with a crude case fatality rate of about 0.5-10 % depending on locality. A few clinically approved drugs, such as remdesivir, chloroquine, hydroxychloroquine, nafamostat, camostat, and ivermectin, exhibited anti-SARS-CoV-2 activity in vitro and/or in a small number of patients. However, their clinical use may be limited by anti-SARS-CoV-2 50 % maximal effective concentrations (EC50) that exceeded their achievable peak serum concentrations (Cmax), side effects, and/or availability. To find more immediately available COVID-19 antivirals, we established a two-tier drug screening system that combines SARS-CoV-2 enzyme-linked immunosorbent assay and cell viability assay, and applied it to screen a library consisting 1528 FDA-approved drugs. Cetilistat (anti-pancreatic lipase), diiodohydroxyquinoline (anti-parasitic), abiraterone acetate (synthetic androstane steroid), and bexarotene (antineoplastic retinoid) exhibited potent in vitro anti-SARS-CoV-2 activity (EC50 1.13-2.01 µM). Bexarotene demonstrated the highest Cmax:EC50 ratio (1.69) which was higher than those of chloroquine, hydroxychloroquine, and ivermectin. These results demonstrated the efficacy of the two-tier screening system and identified potential COVID-19 treatments which can achieve effective levels if given by inhalation or systemically depending on their pharmacokinetics.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus , Coronavirus Infections/drug therapy , Drug Evaluation, Preclinical/methods , Pneumonia, Viral/drug therapy , Androstenes/pharmacology , Animals , Benzoxazines/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/physiology , Bexarotene/pharmacology , COVID-19 , Caco-2 Cells , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus Infections/virology , Cytopathogenic Effect, Viral/drug effects , Databases, Pharmaceutical , Drug Approval , Drug Repositioning , Enzyme-Linked Immunosorbent Assay , Humans , Iodoquinol/pharmacology , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , United States , United States Food and Drug Administration , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
20.
EMBO Rep ; 19(10)2018 10.
Article in English | MEDLINE | ID: mdl-30104205

ABSTRACT

Mouse p202 is a disease locus for lupus and a dominant-negative inhibitor of AIM2 inflammasome activation. A human homolog of p202 has not been identified so far. Here, we report a novel transcript isoform of human IFI16-designated IFI16-ß, which has a domain architecture similar to that of mouse p202. Like p202, IFI16-ß contains two HIN domains, but lacks the pyrin domain. IFI16-ß is ubiquitously expressed in various human tissues and cells. Its mRNA levels are also elevated in leukocytes of patients with lupus, virus-infected cells, and cells treated with interferon-ß or phorbol ester. IFI16-ß co-localizes with AIM2 in the cytoplasm, whereas IFI16-α is predominantly found in the nucleus. IFI16-ß interacts with AIM2 to impede the formation of a functional AIM2-ASC complex. In addition, IFI16-ß sequesters cytoplasmic dsDNA and renders it unavailable for AIM2 sensing. Enforced expression of IFI16-ß inhibits the activation of AIM2 inflammasome, whereas knockdown of IFI16-ß augments interleukin-1ß secretion triggered by dsDNA but not dsRNA Thus, cytoplasm-localized IFI16-ß is functionally equivalent to mouse p202 that exerts an inhibitory effect on AIM2 inflammasome.


Subject(s)
DNA-Binding Proteins/genetics , Inflammasomes/genetics , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Animals , Cell Nucleus/genetics , DNA/genetics , DNA-Binding Proteins/antagonists & inhibitors , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Interleukin-1beta/genetics , Mice , Protein Isoforms/genetics , RNA, Double-Stranded/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL