Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Org Biomol Chem ; 20(27): 5423-5433, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35758412

ABSTRACT

Lipid droplets (LDs) are crucial biological organelles connected with metabolic pathways in biological systems and diseases. To monitor the locations and accumulation of LDs in lipid-related diseases, the development of a visualization tool for LDs has gained importance. In particular, LD visualization using fluorescent probes has gained attention. Herein, a new fluorescent nanoprobe, BMeS-Ali, is developed that can sense LDs based on an amphiphilic single benzene-based fluorophore (SBBF). BMeS-Ali consists of hydrophilic (-NH2) and hydrophobic (-C12H25) moieties and exists as a micelle nanostructure in aqueous media. BMeS-Ali has a weak fluorescence, but its emission was dramatically enhanced upon exposure to the LD components such as oleic acids (OA) by reassembling its nano-formulation. BMeS-Ali showed a selective LD staining ability and great biocompatibility in cells (cancer cells and stem cells). It also showed a practical sensing ability towards biologically derived lipids and can be applied to the visualization of human fingerprints. We found that the nanoprobe BMeS-Ali has significant potential to serve as a practical dye and sensor for lipids, especially for LD imaging in the biomedical research area and broader industrial applications.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Benzene , Fluorescence , Fluorescent Dyes/metabolism , Humans , Ionophores , Lipid Droplets/chemistry , Lipids
2.
J Mater Chem B ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158417

ABSTRACT

Management of diseases through medication accounts for the largest portion of treatment, with people worldwide relying on a variety of medicines to treat and prevent minor to severe diseases in modern society. However, the recent increased use of counterfeit medicines rather than certified medication has emerged as a serious social concern. This study introduces a new hybrid material, named SBBF-chitosan (SC), which integrates a single-benzene-based fluorophore (SBBF) and chitosan, serving as a fluorescence-based authentication barcode for certified medication. The synthesis and characterization of SC, along with an analysis of its photophysical properties, were systematically conducted. SC demonstrated bright emission with high stability under various environmental conditions. In vitro analyses and in vivo animal experiment results further indicated the safety of SC for oral intake, even when directly incorporated into medicines. We are confident that this newly developed formulation SC provides a fundamental solution to address the challenges posed by counterfeit medicines, thereby safeguarding medication authenticity.

4.
STAR Protoc ; 4(3): 102412, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37421612

ABSTRACT

Current fire blight diagnosis techniques are DNA based and require specialized equipment and expertise, or they are less sensitive. Here, we present a protocol for diagnosing fire blight using the fluorescent probe, B-1. We describe steps for Erwinia amylovora culture, implementing a fire blight-infected model, and E. amylovora visualization. This protocol allows for detection of fire blight bacteria of up to 102 CFU/mL on plants or objects in just 10 s with a simple application including spraying and swabbing. For complete details on the use and execution of this protocol, please refer to Jung et al.1.


Subject(s)
Erwinia amylovora , Erwinia amylovora/genetics , Fluorescent Dyes , Plants
5.
iScience ; 26(4): 106557, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37102150

ABSTRACT

Fire blight is a representative plant infection that contaminates edible plants and causes socio-economic problems in agricultural and livestock industries globally. It is caused by the pathogen Erwinia amylovora (E. amylovora) creates lethal plant necrosis and spreads rapidly across plant organs. We newly disclose the fluorogenic probe B-1 for real-time on-site detection of fire blight bacteria for the first time. B-1 exhibited no emission signals but manifested bright emission properties in the presence of fire blight bacteria. Based on these features, fluorescence imaging of the fire blight bacteria and its real-time detection from the infected host plant tissues were conducted. The detection limit against E. amylovora was 102 CFU/mL, which had excellent sensitivity. The fluorogenic probe-based on-site diagnostic technology was supplemented by introducing a new portable UV device. This work holds enormous potential to be a new advanced tool for detecting fire blight in agricultural and livestock industries.

SELECTION OF CITATIONS
SEARCH DETAIL