Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 600
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Physiol ; 195(3): 2406-2427, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38588053

ABSTRACT

Plants undergo various age-dependent changes in leaf morphology during juvenile to adult vegetative stage. However, the precise molecular mechanisms governing these changes in apple (Malus domestica) remain unknown. Here, we showed that CYTOKININ OXIDASE/DEHYDROGENASE5 (MdCKX5), an age-dependent gene, encodes a functional CKX enzyme and serves as the common downstream target of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor MdSPL14 and WRKY transcription factor MdWRKY24 to control the degradation of cytokinin (CK). As the target of mdm-microRNA156a, MdSPL14 interacts with MdWRKY24 to coordinately repress the transcription of MdCKX5 by forming the age-mediated mdm-miR156a-MdSPL14-MdWRKY24 module, which regulates age-dependent changes in CK during the juvenile-to-adult phase transition. We further demonstrated that MdARR6, a type-A ARABIDOPSIS RESPONSE REGULATOR (ARR), is a negative feedback regulator in the CK signaling pathway. Silencing of MdARR6 in apple resulted in large leaves with smaller epidermal cells and a greater number of epidermal cells. Biochemical analysis showed that the mdm-miR156a-MdSPL14-MdWRKY24 module acts as a transcriptional repressor to directly regulate MdARR6 expression, thus controlling the age-dependent changes in leaf size by reducing CK responses. These findings established a link between the age pathway and CK signaling and revealed the molecular mechanism underlying age-dependent changes during the juvenile-to-adult phase transition; our results also provide targets for the genetic improvement of the vegetative phase transition in apple.


Subject(s)
Cytokinins , Gene Expression Regulation, Plant , Malus , Plant Leaves , Plant Proteins , Malus/genetics , Malus/growth & development , Malus/metabolism , Malus/anatomy & histology , Plant Leaves/genetics , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Cytokinins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Oxidoreductases/metabolism , Oxidoreductases/genetics , Signal Transduction
2.
BMC Plant Biol ; 24(1): 445, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778277

ABSTRACT

BACKGROUND: Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT: Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION: Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.


Subject(s)
Acer , DNA Barcoding, Taxonomic , DNA, Plant , DNA, Ribosomal , Phylogeny , Acer/genetics , DNA Barcoding, Taxonomic/methods , DNA, Ribosomal/genetics , DNA, Plant/genetics , Plastids/genetics , Species Specificity , Cell Nucleus/genetics
3.
Plant Biotechnol J ; 22(1): 116-130, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37752622

ABSTRACT

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is an important tool for engineering broad-spectrum disease resistance against multiple pathogens. Ectopic expression of RPW8.1 leads to enhanced disease resistance with cell death at leaves and compromised plant growth, implying a regulatory mechanism balancing RPW8.1-mediated resistance and growth. Here, we show that RPW8.1 constitutively enhances the expression of transcription factor WRKY51 and activates salicylic acid and ethylene signalling pathways; WRKY51 in turn suppresses RPW8.1 expression, forming a feedback regulation loop. RPW8.1 and WRKY51 are both induced by pathogen infection and pathogen-/microbe-associated molecular patterns. In ectopic expression of RPW8.1 background (R1Y4), overexpression of WRKY51 not only rescues the growth suppression and cell death caused by RPW8.1, but also suppresses RPW8.1-mediated broad-spectrum disease resistance and pattern-triggered immunity. Mechanistically, WRKY51 directly binds to and represses RPW8.1 promoter, thus limiting the expression amplitude of RPW8.1. Moreover, WRKY6, WRKY28 and WRKY41 play a role redundant to WRKY51 in the suppression of RPW8.1 expression and are constitutively upregulated in R1Y4 plants with WRKY51 being knocked out (wrky51 R1Y4) plants. Notably, WRKY51 has no significant effects on disease resistance or plant growth in wild type without RPW8.1, indicating a specific role in RPW8.1-mediated disease resistance. Altogether, our results reveal a regulatory circuit controlling the accumulation of RPW8.1 to an appropriate level to precisely balance growth and disease resistance during pathogen invasion.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Disease Resistance/genetics , Feedback , Arabidopsis/metabolism , Cell Death , Plant Diseases/genetics , Gene Expression Regulation, Plant/genetics
4.
Phys Rev Lett ; 132(19): 191901, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804936

ABSTRACT

We present the first lattice QCD calculation of the universal axial γW-box contribution □_{γW}^{VA} to both superallowed nuclear and neutron beta decays. This contribution emerges as a significant component within the theoretical uncertainties surrounding the extraction of |V_{ud}| from superallowed decays. Our calculation is conducted using two domain wall fermion ensembles at the physical pion mass. To construct the nucleon four-point correlation functions, we employ the random sparsening field technique. Furthermore, we incorporate long-distance contributions to the hadronic function using the infinite-volume reconstruction method. Upon performing the continuum extrapolation, we arrive at □_{γW}^{VA}=3.65(7)_{lat}(1)_{PT}×10^{-3}. Consequently, this yields a slightly higher value of |V_{ud}|=0.973 86(11)_{exp}(9)_{RC}(27)_{NS}, reducing the previous 2.1σ tension with the CKM unitarity to 1.8σ. Additionally, we calculate the vector γW-box contribution to the axial charge g_{A}, denoted as □_{γW}^{VV}, and explore its potential implications.

5.
BMC Cancer ; 24(1): 799, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965454

ABSTRACT

BACKGROUND: Craniopharyngioma (CP) is a rare malformational tumor characterized by high rates of recurrence and morbid obesity. However, the role of inflammatory mediators in obesity and the prognosis of patients with CP remains unknown. Therefore, the present study aimed to analyze associations of inflammatory mediators with weight-related outcomes and the prognosis of patients with CP. METHODS: A total of 130 consecutive patients with CP were included in this study. The expression levels of seven inflammatory mediators and the plasma leptin concentration were investigated. Clinical parameters, weight changes, new-onset obesity, and progression-free survival (PFS) were recorded. The relationships between inflammatory mediators, clinicopathologic parameters, weight-related outcomes, and PFS were explored. RESULTS: Compared with those in normal pituitary tissue, the expressions of inflammatory mediators in tumor tissue were higher. Higher expression levels of CXCL1 and CXCL8 were identified as independent risk factors for significant weight gain, and CXCL1 and TNF were identified as independent risk factors for new-onset postoperative obesity. Poor PFS was associated with higher expression levels of CXCL1, CXCL8, IL1A, IL6, and TNF. CONCLUSION: The present study revealed that inflammatory mediators are associated with morbid obesity in patients with CP. Inflammatory mediators may be the critical bridge between elevated leptin and weight-related outcomes. Additionally, PFS was associated with the expression of inflammatory mediators. Further research is needed to elucidate the underlying mechanisms of inflammatory mediators and their potential as targets for novel therapies for CP.


Subject(s)
Craniopharyngioma , Inflammation Mediators , Leptin , Pituitary Neoplasms , Progression-Free Survival , Humans , Craniopharyngioma/metabolism , Craniopharyngioma/pathology , Craniopharyngioma/mortality , Craniopharyngioma/complications , Female , Male , Adult , Pituitary Neoplasms/mortality , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Pituitary Neoplasms/blood , Middle Aged , Inflammation Mediators/metabolism , Leptin/blood , Leptin/metabolism , Prognosis , Obesity/complications , Obesity/metabolism , Obesity, Morbid/complications , Obesity, Morbid/metabolism , Obesity, Morbid/mortality , Young Adult , Chemokine CXCL1/metabolism , Chemokine CXCL1/blood , Age of Onset , Risk Factors , Clinical Relevance , Interleukin-8
6.
BMC Cancer ; 24(1): 521, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658858

ABSTRACT

BACKGROUND: Emerging evidence suggests that the gut microbiota is associated with various intracranial neoplastic diseases. It has been observed that alterations in the gut microbiota are present in gliomas, meningiomas, and pituitary neuroendocrine tumors (Pit-NETs). However, the correlation between gut microbiota and craniopharyngioma (CP), a rare embryonic malformation tumor in the sellar region, has not been previously mentioned. Consequently, this study aimed to investigate the gut microbiota composition and metabolic patterns in CP patients, with the goal of identifying potential therapeutic approaches. METHODS: We enrolled 15 medication-free and non-operated patients with CP and 15 healthy controls (HCs), conducting sequential metagenomic and metabolomic analyses on fecal samples to investigate changes in the gut microbiota of CP patients. RESULTS: The composition of gut microbiota in patients with CP compared to HCs show significant discrepancies at both the genus and species levels. The CP group exhibits greater species diversity. And the metabolic patterns between the two groups vary markedly. CONCLUSIONS: The gut microbiota composition and metabolic patterns in patients with CP differ significantly from the healthy population, presenting potential new therapeutic opportunities.


Subject(s)
Craniopharyngioma , Feces , Gastrointestinal Microbiome , Pituitary Neoplasms , Humans , Craniopharyngioma/metabolism , Male , Female , Adult , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/microbiology , Feces/microbiology , Middle Aged , Case-Control Studies , Young Adult , Adolescent , Metabolomics/methods , Metagenomics/methods , Metabolome
7.
Acta Pharmacol Sin ; 45(1): 98-111, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37726422

ABSTRACT

Restenosis after angioplasty is caused usually by neointima formation characterized by aberrant vascular smooth muscle cell (VSMC) dedifferentiation. Myeloid-derived growth factor (MYDGF), secreted from bone marrow-derived monocytes and macrophages, has been found to have cardioprotective effects. In this study we investigated the effect of MYDGF to postinjury neointimal formation and the underlying mechanisms. Rat carotid arteries balloon-injured model was established. We found that plasma MYDGF content and the level of MYDGF in injured arteries were significantly decreased after balloon injury. Local application of exogenous MYDGF (50 µg/mL) around the injured vessel during balloon injury markedly ameliorated the development of neointimal formation evidenced by relieving the narrow endovascular diameter, improving hemodynamics, and reducing collagen deposition. In addition, local application of MYDGF inhibited VSMC dedifferentiation, which was proved by reversing the elevated levels of osteopontin (OPN) protein and decreased levels of α-smooth muscle actin (α-SMA) in the left carotid arteries. We showed that PDGF-BB (30 ng/mL) stimulated VSMC proliferation, migration and dedifferentiation in vitro; pretreatment with MYDGF (50-200 ng/mL) concentration-dependently eliminated PDGF-BB-induced cell proliferation, migration and dedifferentiation. Molecular docking revealed that MYDGF had the potential to bind with sphingosine-1-phosphate receptor 2 (S1PR2), which was confirmed by SPR assay and Co-IP analysis. Pretreatment with CCG-1423 (Rho signaling inhibitor), JTE-013 (S1PR2 antagonist) or Ripasudil (ROCK inhibitor) circumvented the inhibitory effects of MYDGF on VSMC phenotypic switching through inhibiting S1PR2 or its downstream RhoA-actin monomers (G-actin) /actin filaments (F-actin)-MRTF-A signaling. In summary, this study proves that MYDGF relieves neointimal formation of carotid arteries in response to balloon injury in rats, and suppresses VSMC dedifferentiation induced by PDGF-BB via S1PR2-RhoA-G/F-actin-MRTF-A signaling pathway. In addition, our results provide evidence for cross talk between bone marrow and vasculature.


Subject(s)
Actins , Neointima , Rats , Animals , Becaplermin/pharmacology , Neointima/drug therapy , Neointima/metabolism , Actins/metabolism , Rats, Sprague-Dawley , Sphingosine-1-Phosphate Receptors/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte Colony-Stimulating Factor/pharmacology , Muscle, Smooth, Vascular , Molecular Docking Simulation , Cell Proliferation , Signal Transduction , Cell Movement , Myocytes, Smooth Muscle/metabolism , Cells, Cultured
8.
Chem Biodivers ; 21(6): e202400583, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38590217

ABSTRACT

Plant disease control mainly relies on pesticides. In this study, a series of coumarin derivatives containing hydrazone moiety were designed and synthesized. The synthesized compounds were characterized and used to evaluate the antifungal activity against four pathogens, Botrytis cinerea, Alternaria solani, Fusarium oxysporum, and Alternaria alternata. The results showed that the inhibition rate of some compounds at 100 µg/mL in 96 hours reached around 70 % against A. alternata, higher than that of the positive control. The corresponding EC50 values were found at around 30 µg/mL. Finally, the compound 3 b was screened out with the lowest EC50 value (19.49 µg/mL). The analysis of SEM and TEM confirmed that the compound 3 b can obviously damage the morphological structure of hyphae, resulting in the depletion of the cells by the destruction of morphological matrix and leakage of contents. RNA sequencing showed that compounds 3 b mainly affected the pentose phosphate pathway, which caused to destroy the layer of mitochondrial structure. Molecular docking showed that compounds 3 b fitted the binding pocket of yeast transketolase and interacted with lysine at the hydrazone structure. Our results suggested that the introduction of hydrazone was an effective strategy for the design of novel bioactive compounds.


Subject(s)
Alternaria , Antifungal Agents , Botrytis , Coumarins , Fusarium , Hydrazones , Microbial Sensitivity Tests , Molecular Docking Simulation , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Alternaria/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Fusarium/drug effects , Structure-Activity Relationship , Botrytis/drug effects , Molecular Structure , Dose-Response Relationship, Drug
9.
Chem Biodivers ; 21(5): e202400311, 2024 May.
Article in English | MEDLINE | ID: mdl-38494946

ABSTRACT

Phytopathogenic fungi is the most devastating reason for the decrease of the agricultural production and food safety. To develop new fungicidal agents for resistance concerning, a novel series of aminocoumarin derivatives were synthesized and their fungicidal activity were investigated both in vitro and in vivo. Transmission electron microscope (TEM), scanning electron microscope (SEM), RNA-Seq, 3D-QSAR and molecular docking were applied to reveal the underlying anti-fungal mechanisms. Most of the compounds exhibited significant fungicidal activity. Notably, compound 10c had a more extensive fungicidal effect than positive control. TEM indicated that compound 10c could cause abnormal morphology of cell walls, vacuoles and release of cellular contents. Transcriptional analysis data indicated that 895 and 653 out of 1548 differential expressed genes (DEGs) were up-regulated and down-regulated respectively. The Go and KEGG enrichment indicated that the coumarin derivatives could induce significant changes of succinate dehydrogenase (SDH), Acetyl-coenzyme A synthetase (ACCA) and pyruvate dehydrogenase (PDH) genes, which contributed to the disorders of glucolipid metabolism and the dysfunction of mitochondrial. The results demonstrated that aminocoumarins with schiff-base as core moieties could be the promising lead compounds for the discovery of novel fungicides.


Subject(s)
Coumarins , Drug Design , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/chemical synthesis , Structure-Activity Relationship , Molecular Docking Simulation , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Molecular Structure , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Quantitative Structure-Activity Relationship , Botrytis/drug effects
10.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731534

ABSTRACT

Two unreported heteropolysaccharides, denoted as YCJP-1 and YCJP-2, were isolated from the herbs of Chloranthus japonicus. YCJP-1 was a heteropolysaccharide composed of glucose, galactose, arabinose, mannose, rhamnose, and a minor proportion of uronic acids, with the molecular weight mainly distributed in the 74,475-228,443 Da range. YCJP-2 was mainly composed of glucose, mannose, and galactose, with the molecular weights ranging from 848 to 5810 Da. To further evaluate the anti-gastric cancer effects of C. japonicus, the inhibitory effects of the crude polysaccharide (YCJP) and the purified polysaccharides (YCJP-1 and YCJP-2) were determined using a CCK-8 assay and colon-forming assay on MGC-803 and AGS gastric cancer cell lines. Our results showed that YCJP, YCJP-1, and YCJP-2 possess prominent inhibitory effects on the proliferation of MGC-803 and AGS cells, and the AGS cell was more sensitive to YCJP, YCJP-1, and YCJP-2. Moreover, YCJP-2 demonstrated superior anti-gastric cancer effects compared to YCJP-1. This could potentially be attributed to YCJP-2's higher glucose content and narrower molecular weight distribution.


Subject(s)
Cell Proliferation , Polysaccharides , Stomach Neoplasms , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Weight , Caryophyllaceae/chemistry
11.
Plant J ; 110(1): 166-178, 2022 04.
Article in English | MEDLINE | ID: mdl-34997660

ABSTRACT

Many rice microRNAs have been identified as fine-tuning factors in the regulation of agronomic traits and immunity. Among them, Osa-miR535 targets SQUAMOSA promoter binding protein-like 14 (OsSPL14) to positively regulate tillers but negatively regulate yield and immunity. Here, we uncovered that Osa-miR535 targets another SPL gene, OsSPL4, to suppress rice immunity against Magnaporthe oryzae. Overexpression of Osa-miR535 significantly decreased the accumulation of the fusion protein SPL4TBS -YFP that contains the target site of Osa-miR535 in OsSPL4. Consistently, Osa-miR535 mediated the cleavage of OsSPL4 mRNA between the 10th and 11th base pair of the predicted binding site at the 3' untranslated region. Transgenic rice lines overexpressing OsSPL4 (OXSPL4) displayed enhanced blast disease resistance accompanied by enhanced immune responses, including increased expression of defense-relative genes and up-accumulated H2 O2 . By contrast, the knockout mutant osspl4 exhibited susceptibility. Moreover, OsSPL4 binds to the promoter of GH3.2, an indole-3-acetic acid-amido synthetase, and promotes its expression. Together, these data indicate that Os-miR535 targets OsSPL4 and OsSPL4-GH3.2, which may parallel the OsSPL14-WRKY45 module in rice blast disease resistance.


Subject(s)
Magnaporthe , Oryza , Carrier Proteins/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Magnaporthe/metabolism , Oryza/metabolism , Plant Diseases , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Ecol Lett ; 26(11): 1898-1910, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37776563

ABSTRACT

Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant-herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests.


Subject(s)
Herbivory , Rainforest , Animals , Forests , Plant Leaves , Phylogeny , Insecta
13.
J Am Chem Soc ; 145(16): 8954-8964, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37029734

ABSTRACT

Mechanical interactions between cells and extracellular matrix (ECM) are critical for stem cell fate decision. Synthetic models of ECM, such as hydrogels, can be used to precisely manipulate the mechanical properties of the cell niche and investigate how mechanical signals regulate the cell behavior. However, it has long been a great challenge to tune solely the ECM-mimic hydrogels' mechanical signals since altering the mechanical properties of most materials is usually accompanied by chemical and topological changes. Here, we employ DNA and its enantiomers to prepare a series of hydrogels with univariate stiffness regulation, which enables a precise interpretation of the fate decision of neural progenitor cells (NPCs) in a three-dimensional environment. Using single-cell RNA sequencing techniques, Monocle pseudotime trajectory and CellphoneDB analysis, we demonstrate that the stiffness of the hydrogel alone does not influence the differentiation of NPCs, but the degradation of the hydrogel that enhances cell-cell interactions is possibly the main reason. We also find that ECM remodeling facilitates cells to sense mechanical stimuli.


Subject(s)
Hydrogels , Transcriptome , Hydrogels/chemistry , Extracellular Matrix/metabolism , Stem Cells , DNA/metabolism
14.
Apoptosis ; 28(11-12): 1584-1595, 2023 12.
Article in English | MEDLINE | ID: mdl-37535214

ABSTRACT

Currently, radiotherapy is one of the most attractive treatments for prostate cancer (PCa) patients. However, radioresistance remains a challenging issue and the underlying mechanism is unknown. Growing evidence has demonstrated that CDC20 (Cell division cycle protein 20) plays a pivotal role in a variety of tumors, including PCa. Here, GEPIA database mining and western blot analysis showed that higher expression of CDC20 was observed in PCa tissues and cells. We demonstrated that the expression of CDC20 was increased in PCa cells by irradiation, and knockdown of CDC20 resulted in inhibition of cell proliferation, migration, tumor formation, induced cell apoptosis and increased radiosensitivity in PCa in vitro and in vivo. Furthermore, we observed that CDC20 regulated Twist1 pathway, influencing cell proliferation and migration. These results suggest that targeting CDC20 and Twist1 may be an effective way to improve the radiosensitivity of PCa.


Subject(s)
Apoptosis , Prostatic Neoplasms , Male , Humans , Apoptosis/genetics , Cell Line, Tumor , Prostatic Neoplasms/genetics , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Cell Proliferation/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Gene Expression Regulation, Neoplastic , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism
15.
Small ; 19(3): e2205088, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36424142

ABSTRACT

Surface defects-mediated nonradiative recombination plays a critical role in the performance and stability of perovskite solar cells (PSCs) and surface post-treatment is widely used for efficient PSCs. However, the commonly used surface passivation strategies are one-off and the passivation defect ability is limited, which can only solve part of the defects in the topmost surface area. Here, a secondary anti-solvent strategy is proposed to further reduce surface defects based on conventional surface passivation for the first time. Based on this, the crystallization quality of 2D Dion-Jacobson perovskite is enhanced and the surface defects density is further reduced by nearly two orders. In addition, a gradient structure of perovskite with n = 2 phases located at the top of the film and 3D-like phases located at the bottom of the film can also be obtained. The modulated perovskite film boosts the efficiency of 2D perovskites (n = 5) up to 19.55%. This strategy is also very useful in other anti-solvent processed perovskite dipping systems, which paves a promising avenue for minimizing surface defects toward highly efficient perovskite devices.

16.
Mol Cell Biochem ; 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38145448

ABSTRACT

The epidermal growth factor receptor 1 (EGFR) plays a crucial role in the progression of various malignant tumors and is considered a potential target for treating triple-negative breast cancer (TNBC). However, the effectiveness of representative tyrosine kinase inhibitors (TKIs) used in EGFR-targeted therapy is limited in TNBC patients. In our study, we observed that the TNBC cell lines MDA-MB-231 and MDA-MB-468 exhibited resistance to Gefitinib. Treatment with Gefitinib caused an upregulation of Fascin-1 (FSCN1) protein expression and a downregulation of miR-221-3p in these cell lines. However, sensitivity to Gefitinib was significantly improved in both cell lines with either inhibition of FSCN1 expression or overexpression of miR-221-3p. Our luciferase reporter assay confirmed that FSCN1 is a target of miR-221-3p. Moreover, Gefitinib treatment resulted in an upregulation of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in MDA-MB-231 cells. Using Stattic, a small-molecule inhibitor of STAT3, we observed a significant enhancement in the inhibitory effect of Gefitinib on the growth, migration, and invasion of MDA-MB-231 cells. Additionally, Stattic treatment upregulated miR-221-3p expression and downregulated FSCN1 mRNA and protein expression. A strong positive correlation was noted between the expression of STAT3 and FSCN1 in breast cancer tissues. Furthermore, patients with high expression levels of both STAT3 and FSCN1 had a worse prognosis. Our findings suggest that elevated FSCN1 expression is linked to primary resistance to EGFR TKIs in TNBC. Moreover, we propose that STAT3 regulates the expression of miR-221-3p/FSCN1 and therefore modulates resistance to EGFR TKI therapy in TNBC. Combining EGFR TKI therapy with inhibition of FSCN1 or STAT3 may offer a promising new therapeutic option for TNBC.

17.
Ther Drug Monit ; 45(6): 786-791, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37296502

ABSTRACT

BACKGROUND: This study aimed to investigate the pharmacokinetic/pharmacodynamic (PK/PD) target attainment of various tigecycline dosing regimens in real-world patients with impaired liver function. METHODS: The clinical data and serum concentrations of tigecycline were extracted from the patients' electronic medical records. Patients were classified into Child-Pugh A, Child-Pugh B, and Child-Pugh C groups, according to the severity of liver impairment. Furthermore, the minimum inhibition concentration (MIC) distribution and PK/PD targets of tigecycline from the literature were used to obtain a proportion of PK/PD targets attainment of various tigecycline dosing regimens at different infected sites. RESULTS: The pharmacokinetic parameters revealed significantly higher values in moderate and severe liver failure (groups Child-Pugh B and Child-Pugh C) than those in mild impairment (Child-Pugh A). Considering the target area under the time-concentration curve (AUC 0-24 )/MIC ≥4.5 for patients with pulmonary infection, most patients with high-dose (100 mg, every 12 hours) or standard-dose (50 mg, every 12 hours) for tigecycline achieved the target in groups Child-Pugh A, B, and C. Considering the target AUC 0-24 /MIC ≥6.96 for patients with intra-abdominal infection, when MIC ≤1 mg/L, more than 80% of the patients achieved the target. For an MIC of 2-4 mg/L, only patients with high-dose tigecycline in groups Child-Pugh B and C attained the treatment target. Patients experienced a reduction in fibrinogen values after treatment with tigecycline. In group Child-Pugh C, all 6 patients developed hypofibrinogenemia. CONCLUSIONS: Severe hepatic impairment may attain higher PK/PD targets, but carries a high risk of adverse reactions.


Subject(s)
Liver Failure , Humans , Tigecycline , Area Under Curve , Anti-Bacterial Agents/pharmacokinetics , Microbial Sensitivity Tests
18.
J Nanobiotechnology ; 21(1): 393, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898773

ABSTRACT

Irinotecan (Ir) is commonly employed as a first-line chemotherapeutic treatment for colorectal cancer (CRC). However, tremendous impediments remain to be addressed to surmount drug resistance and ameliorate adverse events. Poly-ADP-Ribose Polymerase (PARP) participates in the maintenance of genome stability and the repair of DNA damage, thus playing a critical role in chemotherapy resistance. In this work, we introduce a novel curative strategy that utilizes nanoparticles (NPs) prepared by dynamic supramolecular co-assembly of Ir and a PARP inhibitor (PARPi) niraparib (Nir) through π-π stacking and hydrogen bond interactions. The Ir and Nir self-assembled Nano-Twin-Drug of (Nir-Ir NPs) could enhance the therapeutic effect on CRC by synergistically inhibiting the DNA damage repair pathway and activating the tumor cell apoptosis process without obvious toxicity. In addition, the Nir-Ir NPs could effectively reverse irinotecan-resistance by inhibiting the expression of multiple resistance protein-1 (MRP-1). Overall, our study underscores the distinctive advantages and potential of Nir-Ir NPs as a complementary strategy to chemotherapy by simultaneously overcoming the Ir resistance and improving the anti-tumor efficacy against CRC.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Antineoplastic Agents/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Apoptosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Cell Line, Tumor
19.
BMC Urol ; 23(1): 172, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891515

ABSTRACT

PURPOSE: This study aimed to assess the impact of perioperative care based on the Roy Adaptation Model (RAM) on psychological well-being, postoperative pain, and health-related quality of life (HRQoL) in elderly patients with benign prostatic hyperplasia (BPH) undergoing transurethral resection of the prostate (TURP). METHODS: A total of 160 elderly patients diagnosed with BPH between June 2021 and June 2022 and scheduled for TURP were randomly assigned to either the routine care group (n = 80) or the RAM group (n = 80). The RAM group received standard care supplemented with interventions based on the RAM model. Negative emotions measured by the Hospital Anxiety and Depression Scale (HADS), pain intensity by the Visual Analog Scale (VAS), and HRQoL by the 36-Item Short Form Health Survey (SF-36) were measured at the preoperative visit (T0), at 30 days (T1), and at 3 months of (T2) follow­up. RESULTS: Repeated measures ANOVA revealed significant differences in psychological well-being, postoperative pain intensity, and HRQoL within both the routine care and RAM groups across the three time points. Holm-Sidak's multiple comparisons test confirmed significant differences between each time point for both groups. The RAM intervention led to significant reductions in anxiety and depression levels, alleviation of postoperative pain intensity, and improvements in various domains of HRQoL at T1 and T2 compared to routine care. CONCLUSION: Incorporating the RAM model into perioperative care for elderly patients undergoing TURP for BPH has shown promising results in improving psychological well-being, reducing postoperative pain intensity, and enhancing HRQoL.


Subject(s)
Prostatic Hyperplasia , Transurethral Resection of Prostate , Male , Humans , Aged , Quality of Life , Transurethral Resection of Prostate/methods , Prostatic Hyperplasia/surgery , Psychological Well-Being , Pain, Postoperative , Perioperative Care , Treatment Outcome
20.
Sensors (Basel) ; 23(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687833

ABSTRACT

This study aims to find base materials for dry electrode fabrication with high accuracy and without reducing electrode performance for long-term bioelectric potential monitoring after electroless silver plating. Most applications of dry electrodes that have been developed in the past few decades are restricted by low accuracy compared to commercial Ag/AgCl gel electrodes, as in our previous study of PVDF-based dry electrodes. In a recent study, however, nanoweb-based chlorinated polyisoprene (CPI) and poly(styrene-b-butadiene-b-styrene) (SBS) rubber were selected as promising candidates due to their excellent elastic properties, as well as their nanofibril nature, which may improve electrode durability and skin contact. The electroless silver plating technique was employed to coat the nanofiber web with silver, and silver nanoweb(AgNW)-based dry electrodes were fabricated. The key electrode properties (contact impedance, step response, and noise characteristics) for AgNW dry electrodes were investigated thoroughly using agar phantoms. The dry electrodes were subsequently tested on human subjects to establish their realistic performance in terms of ECG, EMG monitoring, and electrical impedance tomography (EIT) measurements. The experimental results demonstrated that the AgNW dry electrodes, particularly the SBS-AgNW dry electrodes, performed similarly to commercial Ag/AgCl gel electrodes and were outperformed in terms of long-term stability.

SELECTION OF CITATIONS
SEARCH DETAIL