Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 120(20): e2220334120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155893

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% decrease in ESCC incidence vs. Zn-untreated controls. Zn treatment eliminated ESCCs by affecting a spectrum of biological processes that included downregulation of expression of the two miRs and miR-31-controlled inflammatory pathway, stimulation of miR-21-PDCD4 axis apoptosis, and reversal of the ESCC metabolome: with decrease in putrescine, increase in glucose, accompanied by downregulation of metabolite enzymes ODC and HK2. Thus, Zn treatment or miR-31/21 silencing are effective therapeutic strategies for ESCC in this rodent model and should be examined in the human counterpart exhibiting the same biological processes.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , Rats , Animals , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Antagomirs , Zinc/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis Regulatory Proteins/metabolism , Inflammation/complications , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Movement , RNA-Binding Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 117(11): 6075-6085, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32123074

ABSTRACT

MicroRNA-31 (miR-31) is overexpressed in esophageal squamous cell carcinoma (ESCC), a deadly disease associated with dietary Zn deficiency and inflammation. In a Zn deficiency-promoted rat ESCC model with miR-31 up-regulation, cancer-associated inflammation, and a high ESCC burden following N-nitrosomethylbenzylamine (NMBA) exposure, systemic antimiR-31 delivery reduced ESCC incidence from 85 to 45% (P = 0.038) and miR-31 gene knockout abrogated development of ESCC (P = 1 × 10-6). Transcriptomics, genome sequencing, and metabolomics analyses in these Zn-deficient rats revealed the molecular basis of ESCC abrogation by miR-31 knockout. Our identification of EGLN3, a known negative regulator of nuclear factor κB (NF-κB), as a direct target of miR-31 establishes a functional link between oncomiR-31, tumor suppressor target EGLN3, and up-regulated NF-κB-controlled inflammation signaling. Interaction among oncogenic miR-31, EGLN3 down-regulation, and inflammation was also documented in human ESCCs. miR-31 deletion resulted in suppression of miR-31-associated EGLN3/NF-κB-controlled inflammatory pathways. ESCC-free, Zn-deficient miR-31-/- rat esophagus displayed no genome instability and limited metabolic activity changes vs. the pronounced mutational burden and ESCC-associated metabolic changes of Zn-deficient wild-type rats. These results provide conclusive evidence that miR-31 expression is necessary for ESCC development.


Subject(s)
Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , MicroRNAs/metabolism , Neoplasms, Experimental/genetics , Animals , Carcinogens/toxicity , Cell Line, Tumor , Dietary Supplements , Esophageal Neoplasms/chemically induced , Esophageal Neoplasms/pathology , Esophageal Neoplasms/prevention & control , Esophageal Squamous Cell Carcinoma/chemically induced , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/prevention & control , Esophagus/pathology , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Male , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , NF-kappa B/metabolism , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/pathology , Neoplasms, Experimental/prevention & control , Nitrosamines/toxicity , Rats , Rats, Transgenic , Signal Transduction/genetics , Zinc/administration & dosage , Zinc/deficiency
3.
Proc Natl Acad Sci U S A ; 115(47): E11091-E11100, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30397150

ABSTRACT

Prostate cancer is a leading cause of cancer death in men over 50 years of age, and there is a characteristic marked decrease in Zn content in the malignant prostate cells. The cause and consequences of this loss have thus far been unknown. We found that in middle-aged rats a Zn-deficient diet reduces prostatic Zn levels (P = 0.025), increases cellular proliferation, and induces an inflammatory phenotype with COX-2 overexpression. This hyperplastic/inflammatory prostate has a human prostate cancer-like microRNA profile, with up-regulation of the Zn-homeostasis-regulating miR-183-96-182 cluster (fold change = 1.41-2.38; P = 0.029-0.0003) and down-regulation of the Zn importer ZIP1 (target of miR-182), leading to a reduction of prostatic Zn. This inverse relationship between miR-182 and ZIP1 also occurs in human prostate cancer tissue, which is known for Zn loss. The discovery that the Zn-depleted middle-aged rat prostate has a metabolic phenotype resembling that of human prostate cancer, with a 10-fold down-regulation of citric acid (P = 0.0003), links citrate reduction directly to prostatic Zn loss, providing the underlying mechanism linking dietary Zn deficiency with miR-183-96-182 overexpression, ZIP1 down-regulation, prostatic Zn loss, and the resultant citrate down-regulation, changes mimicking features of human prostate cancer. Thus, dietary Zn deficiency during rat middle age produces changes that mimic those of human prostate carcinoma and may increase the risk for prostate cancer, supporting the need for assessment of Zn supplementation in its prevention.


Subject(s)
Adenocarcinoma/pathology , Cation Transport Proteins/metabolism , Prostate/pathology , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/pathology , Zinc/deficiency , Adenocarcinoma/genetics , Animals , Cell Proliferation , Citric Acid/metabolism , Diet , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/biosynthesis , Prostatic Hyperplasia/genetics , Prostatic Neoplasms/genetics , Rats , Rats, Sprague-Dawley , Rats, Wistar , Signal Transduction/genetics , Transcription, Genetic/genetics , Tumor Cells, Cultured , Zinc/metabolism
4.
Bioconjug Chem ; 23(2): 158-63, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22239616

ABSTRACT

Monoamine oxidases (MAO) catalyze the oxidative deamination of many biogenic amines and are integral proteins found in the mitochondrial outer membrane. Changes in MAO-A levels are associated with depression, trait aggression, and addiction. Here we report the synthesis, characterization, and in vitro evaluation of novel fluorescent peptide-peptide nucleic acid (PNA) chimeras for MAOA mRNA imaging in live neuronal cells. The probes were designed to include MAOA-specific PNA dodecamers, separated by an N-terminal spacer to a µ-opioid receptor targeting peptide (DAMGO), with a spacer and a fluorophore on the C-terminus. The probe was successfully delivered into human SH-SY5Y neuroblastoma cells through µ-opioid receptor-mediated endocytosis. The K(d) by flow cytometry was 11.6 ± 0.8 nM. Uptake studies by fluorescence microscopy showed ∼5-fold higher signal in human SH-SY5Y neuroblastoma cells than in negative control CHO-K1 cells that lack µ-opioid receptors. Moreover, a peptide-mismatch control sequence showed no significant uptake in SH-SY5Y cells. Such mRNA imaging agents with near-infrared fluorophores might enable real time imaging and quantitation of neuronal mRNAs in live animal models.


Subject(s)
Fluorescent Dyes/analysis , Molecular Imaging , Monoamine Oxidase/genetics , Neurons/metabolism , Peptide Nucleic Acids/analysis , Peptides/analysis , RNA, Messenger/analysis , Animals , CHO Cells , Cricetinae , Flow Cytometry , Fluorescent Dyes/chemistry , Humans , Microscopy, Fluorescence , Molecular Structure , Monoamine Oxidase/analysis , Neuroblastoma/enzymology , Neuroblastoma/genetics , Peptide Nucleic Acids/chemistry , Peptides/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
ACS Omega ; 2(4): 1645-1652, 2017 Apr 30.
Article in English | MEDLINE | ID: mdl-28474012

ABSTRACT

Infections are a devastating complication of titanium alloy orthopedic implants. Current therapies include antibiotic-impregnated bone cement and antibiotic-containing coatings. Daptomycin (DAP) (1) is a novel peptide antibiotic that penetrates the cell membranes of Gram-positive bacteria. Few DAP-resistant strains have appeared so far. We hypothesized that when DAP covalently bonded via a flexible, hydrophilic spacer it could prevent bacterial colonization of titanium alloy surfaces. We designed and synthesized a series of DAP conjugates for bonding to the surface of Ti6Al4V foils through tetra(ethylene glycol) spacers via thioether linkages. The stability and antimicrobial activity of the attached conjugates were evaluated using Staphylococcus aureus ATCC 25923. Colonization of the Ti6Al4V foils was inhibited by 72% at 8 h and 54% at 24 h. The strategy described in this report provides a new, more facile way to prepare bactericidal Ti6Al4V implants.

6.
Oncotarget ; 8(47): 81910-81925, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29137232

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) in humans is a deadly disease associated with dietary zinc (Zn)-deficiency. In the rat esophagus, Zn-deficiency induces cell proliferation, alters mRNA and microRNA gene expression, and promotes ESCC. We investigated whether Zn-deficiency alters cell metabolism by evaluating metabolomic profiles of esophageal epithelia from Zn-deficient and replenished rats vs sufficient rats, using untargeted gas chromatography time-of-flight mass spectrometry (n = 8/group). The Zn-deficient proliferative esophagus exhibits a distinct metabolic profile with glucose down 153-fold and lactic acid up 1.7-fold (P < 0.0001), indicating aerobic glycolysis (the "Warburg effect"), a hallmark of cancer cells. Zn-replenishment rapidly increases glucose content, restores deregulated metabolites to control levels, and reverses the hyperplastic phenotype. Integration of metabolomics and our reported transcriptomic data for this tissue unveils a link between glucose down-regulation and overexpression of HK2, an enzyme that catalyzes the first step of glycolysis and is overexpressed in cancer cells. Searching our published microRNA profile, we find that the tumor-suppressor miR-143, a negative regulator of HK2, is down-regulated in Zn-deficient esophagus. Using in situ hybridization and immunohistochemical analysis, the inverse correlation between miR-143 down-regulation and HK2 overexpression is documented in hyperplastic Zn-deficient esophagus, archived ESCC-bearing Zn-deficient esophagus, and human ESCC tissues. Thus, to sustain uncontrolled cell proliferation, Zn-deficiency reprograms glucose metabolism by modulating expression of miR-143 and its target HK2. Our work provides new insight into critical roles of Zn in ESCC development and prevention.

7.
Oncotarget ; 7(10): 10723-38, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26918602

ABSTRACT

Zinc deficiency (ZD) increases the risk of esophageal squamous cell carcinoma (ESCC), and marginal ZD is prevalent in humans. In rats, marked-ZD (3 mg Zn/kg diet) induces a proliferative esophagus with a 5-microRNA signature (miR-31, -223, -21, -146b, -146a) and promotes ESCC. Here we report that moderate and mild-ZD (6 and 12 mg Zn/kg diet) also induced esophageal hyperplasia, albeit less pronounced than induced by marked-ZD, with a 2-microRNA signature (miR-31, -146a). On exposure to an environmental carcinogen, ~16% of moderate/mild-ZD rats developed ESCC, a cancer incidence significantly greater than for Zn-sufficient rats (0%) (P ≤ 0.05), but lower than marked-ZD rats (68%) (P < 0.001). Importantly, the high ESCC, marked-ZD esophagus had a 15-microRNA signature, resembling the human ESCC miRNAome, with miR-223, miR-21, and miR-31 as the top-up-regulated species. This signature discriminated it from the low ESCC, moderate/mild-ZD esophagus, with a 2-microRNA signature (miR-31, miR-223). Additionally, Fbxw7, Pdcd4, and Stk40 (tumor-suppressor targets of miR-223, -21, and -31) were downregulated in marked-ZD cohort. Bioinformatics analysis predicted functional relationships of the 3 tumor-suppressors with other cancer-related genes. Thus, microRNA dysregulation and ESCC progression depend on the extent of dietary Zn deficiency. Our findings suggest that even moderate ZD may promote esophageal cancer and dietary Zn has preventive properties against ESCC. Additionally, the deficiency-associated miR-223, miR-21, and miR-31 may be useful therapeutic targets in ESCC.


Subject(s)
Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/blood , Esophageal Neoplasms/genetics , MicroRNAs/genetics , Zinc/deficiency , Animals , Carcinoma, Squamous Cell/pathology , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Humans , Male , Mice , MicroRNAs/metabolism , Random Allocation , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL