Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cell ; 173(3): 693-705.e22, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677513

ABSTRACT

Liquid-liquid phase separation (LLPS) is believed to underlie formation of biomolecular condensates, cellular compartments that concentrate macromolecules without surrounding membranes. Physical mechanisms that control condensate formation/dissolution are poorly understood. The RNA-binding protein fused in sarcoma (FUS) undergoes LLPS in vitro and associates with condensates in cells. We show that the importin karyopherin-ß2/transportin-1 inhibits LLPS of FUS. This activity depends on tight binding of karyopherin-ß2 to the C-terminal proline-tyrosine nuclear localization signal (PY-NLS) of FUS. Nuclear magnetic resonance (NMR) analyses reveal weak interactions of karyopherin-ß2 with sequence elements and structural domains distributed throughout the entirety of FUS. Biochemical analyses demonstrate that most of these same regions also contribute to LLPS of FUS. The data lead to a model where high-affinity binding of karyopherin-ß2 to the FUS PY-NLS tethers the proteins together, allowing multiple, distributed weak intermolecular contacts to disrupt FUS self-association, blocking LLPS. Karyopherin-ß2 may act analogously to control condensates in diverse cellular contexts.


Subject(s)
Active Transport, Cell Nucleus , Nuclear Localization Signals , RNA-Binding Protein FUS/chemistry , beta Karyopherins/chemistry , Binding Sites , Frontotemporal Lobar Degeneration/metabolism , Humans , Karyopherins/metabolism , Light , Liquid-Liquid Extraction , Macromolecular Substances , Magnetic Resonance Spectroscopy , Mutation , Nephelometry and Turbidimetry , Protein Binding , Protein Domains , RNA/chemistry , Scattering, Radiation , Temperature
2.
Cell ; 175(3): 809-821.e19, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30270044

ABSTRACT

Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here, we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis. SelO pseudokinases localize to the mitochondria and AMPylate proteins involved in redox homeostasis. Consequently, SelO activity is necessary for the proper cellular response to oxidative stress. Our results suggest that AMPylation may be a more widespread post-translational modification than previously appreciated and that pseudokinases should be analyzed for alternative transferase activities.


Subject(s)
Adenosine Monophosphate/metabolism , Catalytic Domain , Protein Processing, Post-Translational , Selenoproteins/metabolism , Conserved Sequence , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidative Stress , Selenoproteins/chemistry
3.
Proc Natl Acad Sci U S A ; 120(29): e2301199120, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37450495

ABSTRACT

Previously, we showed that the nuclear import receptor Importin-9 wraps around the H2A-H2B core to chaperone and transport it from the cytoplasm to the nucleus. However, unlike most nuclear import systems where RanGTP dissociates cargoes from their importins, RanGTP binds stably to the Importin-9•H2A-H2B complex, and formation of the ternary RanGTP•Importin-9•H2A-H2B complex facilitates H2A-H2B release to the assembling nucleosome. It was unclear how RanGTP and the cargo H2A-H2B can bind simultaneously to an importin, and how interactions of the three components position H2A-H2B for release. Here, we show cryo-EM structures of Importin-9•RanGTP and of its yeast homolog Kap114, including Kap114•RanGTP, Kap114•H2A-H2B, and RanGTP•Kap114•H2A-H2B, to explain how the conserved Kap114 binds H2A-H2B and RanGTP simultaneously and how the GTPase primes histone transfer to the nucleosome. In the ternary complex, RanGTP binds to the N-terminal repeats of Kap114 in the same manner as in the Kap114/Importin-9•RanGTP complex, and H2A-H2B binds via its acidic patch to the Kap114 C-terminal repeats much like in the Kap114/Importin-9•H2A-H2B complex. Ran binds to a different conformation of Kap114 in the ternary RanGTP•Kap114•H2A-H2B complex. Here, Kap114 no longer contacts the H2A-H2B surface proximal to the H2A docking domain that drives nucleosome assembly, positioning it for transfer to the assembling nucleosome or to dedicated H2A-H2B chaperones in the nucleus.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae Proteins , Nucleosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Protein Binding , Karyopherins/metabolism , Saccharomyces cerevisiae/metabolism , Molecular Chaperones/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
4.
Biochemistry ; 59(18): 1747-1755, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32314908

ABSTRACT

WNK kinases autoactivate by autophosphorylation. Crystallography of the kinase domain of WNK1 phosphorylated on the primary activating site (pWNK1) in the presence of AMP-PNP reveals a well-ordered but inactive configuration. This new pWNK1 structure features specific and unique interactions of the phosphoserine, less hydration, and smaller cavities compared with those of unphosphorylated WNK1 (uWNK1). Because WNKs are activated by osmotic stress in cells, we addressed whether the structure was influenced directly by osmotic pressure. pWNK1 crystals formed in PEG3350 were soaked in the osmolyte sucrose. Suc-WNK1 crystals maintained X-ray diffraction, but the lattice constants and pWNK1 structure changed. Differences were found in the activation loop and helix C, common switch loci in kinase activation. On the basis of these structural changes, we tested for effects on in vitro activity of two WNKs, pWNK1 and pWNK3. The osmolyte PEG400 enhanced ATPase activity. Our data suggest multistage activation of WNKs.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , WNK Lysine-Deficient Protein Kinase 1/metabolism , Animals , Crystallography, X-Ray , Humans , Models, Molecular , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Rats , WNK Lysine-Deficient Protein Kinase 1/chemistry
5.
bioRxiv ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39211127

ABSTRACT

Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Unlike the traditional hydrophobic nuclear export signal (NES) utilized by the Exportin-1/XPO1 system, cryogenic-electron microscopy structures reveal that Pho4 presents a novel, phosphorylated 35-residue NES that interacts with the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches, unveiling a previously unknown mechanism of phosphate-specific recognition. Furthermore, the discovery that unliganded Msn5 is autoinhibited explains the positive cooperativity of Pho4/Ran-binding and proposes a mechanism for Pho4's release in the cytoplasm. These findings advance our understanding of the diversity of signals that drive nuclear export and how cargo phosphorylation is crucial in regulating nuclear transport and controlling cellular signaling pathways.

6.
bioRxiv ; 2023 May 10.
Article in English | MEDLINE | ID: mdl-37214964

ABSTRACT

Histones are synthesized and processed in the cytoplasm and then transported into the nucleus for assembly into nucleosomes. H2A-H2B is imported into the S. cerevisiae nucleus by the importin Kap114, which also imports the most prominent H2A-H2B chaperone, Nap1. We understand how Kap114 recognizes H2A-H2B for nuclear import, but little is known about how it recognizes Nap1. Furthermore, the ternary complex of Nap1, H2A-H2B and Kap114 was previously detected in both the cytosol and the nucleus, but its role in nuclear import is unclear. Here, we present biophysical analysis of interactions between Nap1, H2A-H2B, Kap114 and RanGTP, and cryo-electron microscopy structures of ternary Kap114, Nap1 and H2A-H2B complexes. Kap114 binds Nap1 very weakly, but H2A-H2B enhances Kap114-Nap1 interaction to form a ternary Kap114/Nap1/H2A-H2B complex that is stable in the absence and presence of RanGTP. Cryogenic electron microscopy structures reveal two distinct ternary Kap114/Nap1/H2A-H2B complexes: a 3.2 Šresolution structure of Nap1 bound to H2A-H2B-bound Kap114 where Nap1 does not contact H2A-H2B, and a 3.5 Šresolution structure of H2A-H2B sandwiched between Nap1 and Kap114. Collectively, these results lead to a mechanistic model of how Nap1•H2A-H2B encounters Kap114 in the cytoplasm and how both H2A-H2B and Nap1 are chaperoned and co-imported by Kap114 into the nucleus. The model also suggests how RanGTP-binding stabilizes a quaternary RanGTP/Kap114/Nap1/H2A-H2B complex that facilitates hand-off of H2A-H2B from Kap114 to Nap1, the assembling nucleosome or other nuclear chaperone. Significance Statement: Free core histones are highly toxic and must be sequestered by other macromolecules in the cell. The mechanism of H3-H4 import by karyopherin Importin-4 in the presence of its chaperone ASF1 is understood, but the mechanism of how histone chaperone Nap1 influences H2A-H2B import is not resolved. We present biophysical interaction analysis and cryo-EM structures that reveal how Kap114, Nap1 and H2A-H2B assemble into an import complex. These results lead us to a structural mechanism of how Nap1 delivers H2A-H2B to Kap114 in the cytosol, how Nap1 and H2A-H2B are co-imported into the nucleus, and how RanGTP may influence Kap114/Nap1/H2A-H2B interactions to assemble nucleosomes in the nucleus.

7.
bioRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36747879

ABSTRACT

Padavannil et al. 2019 show that Importin-9 (Imp9) transports Histones H2A-H2B from the cytoplasm to the nucleus using a non-canonical mechanism whereby binding of a GTP-bound Ran GTPase (RanGTP) fails to evict the H2A-H2B cargo. Instead, a stable complex forms, comprised of equimolar RanGTP, Imp9, and H2A-H2B. Unlike the binary Imp9•H2A-H2B complex, this RanGTP•Imp9•H2A-H2B ternary complex can release H2A-H2B to an assembling nucleosome. Here, we define the molecular basis for this RanGTP-activated nucleosome assembly by Imp9. We use hydrogen-deuterium exchange coupled with mass spectrometry and compare the dynamics and interfaces of the RanGTP•Imp9•H2A-H2B ternary complex to those in the Imp9•H2A-H2B or Imp9•RanGTP binary complexes. Our data are consistent with the Imp9•H2A-H2B structure by Padavannil et al. 2019 showing that Imp9 HEAT repeats 4-5 and 18-19 contact H2A-H2B, as well as many homologous importin•RanGTP structures showing that importin HEAT repeats 1 and 3, and the h8 loop, contact RanGTP. We show that Imp9 stabilizes H2A-H2B beyond the direct binding site, similar to other histone chaperones. Importantly, we reveal that binding of RanGTP releases H2A-H2B interaction at Imp9 HEAT repeats 4-5, but not 18-19. This exposes DNA- and histone-binding surfaces of H2A-H2B, thereby facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. This may ensure that H2A-H2B is only released in high RanGTP concentrations near chromatin. We delineate the molecular link between the nuclear import of H2A-H2B and its deposition into chromatin by Imp9. Significance: Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP alone is insufficient to release H2A-H2B. The resulting stable RanGTP•Imp9•H2A-H2B complex gains nucleosome assembly activity as H2A-H2B can be deposited onto an assembling nucleosome. We show that H2A-H2B is allosterically stabilized via interactions with both N- and C-terminal portions of Imp9, reinforcing its chaperone-like behavior. RanGTP binding causes H2A-H2B release from the N-terminal portion of Imp9 only. The newly-exposed H2A-H2B surfaces can interact with DNA or H3-H4 in nucleosome assembly. Imp9 thus plays a multi-faceted role in histone import, storage, and deposition regulated by RanGTP, controlling histone supply in the nucleus and to chromatin.

8.
Structure ; 31(8): 903-911.e3, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37379840

ABSTRACT

Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP is insufficient to release H2A-H2B. The resulting stable RanGTP·Imp9·H2A-H2B complex gains nucleosome assembly activity with H2A-H2B able to be deposited into an assembling nucleosome in vitro. Using hydrogen-deuterium exchange coupled with mass spectrometry (HDX), we show that Imp9 stabilizes H2A-H2B beyond the direct-binding site, like other histone chaperones. HDX also shows that binding of RanGTP releases H2A-H2B contacts at Imp9 HEAT repeats 4-5, but not 18-19. DNA- and histone-binding surfaces of H2A-H2B are exposed in the ternary complex, facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. Imp9 thus provides a connection between the nuclear import of H2A-H2B and its deposition into chromatin.


Subject(s)
Histones , Nucleosomes , Histones/metabolism , Nucleosome Assembly Protein 1/genetics , Chromatin , Karyopherins/metabolism
9.
Mol Biol Cell ; 34(11): ar109, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37585288

ABSTRACT

Previous study has demonstrated that the WNK kinases 1 and 3 are direct osmosensors consistent with their established role in cell-volume control. WNK kinases may also be regulated by hydrostatic pressure. Hydrostatic pressure applied to cells in culture with N2 gas or to Drosophila Malpighian tubules by centrifugation induces phosphorylation of downstream effectors of endogenous WNKs. In vitro, the autophosphorylation and activity of the unphosphorylated kinase domain of WNK3 (uWNK3) is enhanced to a lesser extent than in cells by 190 kPa applied with N2 gas. Hydrostatic pressure measurably alters the structure of uWNK3. Data from size exclusion chromatography in line with multi-angle light scattering (SEC-MALS), SEC alone at different back pressures, analytical ultracentrifugation (AUC), NMR, and chemical crosslinking indicate a change in oligomeric structure in the presence of hydrostatic pressure from a WNK3 dimer to a monomer. The effects on the structure are related to those seen with osmolytes. Potential mechanisms of hydrostatic pressure activation of uWNK3 and the relationships of pressure activation to WNK osmosensing are discussed.


Subject(s)
Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Hydrostatic Pressure , Phosphorylation
10.
Elife ; 82019 03 11.
Article in English | MEDLINE | ID: mdl-30855230

ABSTRACT

We report the crystal structure of nuclear import receptor Importin-9 bound to its cargo, the histones H2A-H2B. Importin-9 wraps around the core, globular region of H2A-H2B to form an extensive interface. The nature of this interface coupled with quantitative analysis of deletion mutants of H2A-H2B suggests that the NLS-like sequences in the H2A-H2B tails play a minor role in import. Importin-9•H2A-H2B is reminiscent of interactions between histones and histone chaperones in that it precludes H2A-H2B interactions with DNA and H3-H4 as seen in the nucleosome. Like many histone chaperones, which prevent inappropriate non-nucleosomal interactions, Importin-9 also sequesters H2A-H2B from DNA. Importin-9 appears to act as a storage chaperone for H2A-H2B while escorting it to the nucleus. Surprisingly, RanGTP does not dissociate Importin-9•H2A-H2B but assembles into a RanGTP•Importin-9•H2A-H2B complex. The presence of Ran in the complex, however, modulates Imp9-H2A-H2B interactions to facilitate its dissociation by DNA and assembly into a nucleosome.


Subject(s)
Histones/chemistry , Histones/metabolism , Karyopherins/chemistry , Karyopherins/metabolism , Active Transport, Cell Nucleus , Animals , Crystallography, X-Ray , DNA Mutational Analysis , Humans , Karyopherins/genetics , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Binding , Protein Conformation , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL