Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Chemistry ; 30(22): e202400066, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38366887

ABSTRACT

Photoisomerizable peptides are promising drug candidates in photopharmacology. While azobenzene- and diarylethene-containing photoisomerizable peptides have already demonstrated their potential in this regard, reports on the use of spiropyrans to photoregulate bioactive peptides are still scarce. This work focuses on the design and synthesis of a spiropyran-derived amino acid, (S)-2-amino-3-(6'-methoxy-1',3',3'-trimethylspiro-[2H-1-benzopyran-2,2'-indolin-6-yl])propanoic acid, which is suitable for the preparation of photoisomerizable peptides. The utility of this amino acid is demonstrated by incorporating it into the backbone of BP100, a known membrane-active peptide, and by examining the photoregulation of the membrane perturbation by the spiropyran-containing peptides. The toxicity of the peptides (against the plant cell line BY-2), their bacteriotoxicity (E. coli), and actin-auxin oscillator modulation ability were shown to be significantly dependent on the photoisomeric state of the spiropyran unit.


Subject(s)
Escherichia coli , Indoles , Nitro Compounds , Peptides , Benzopyrans/chemistry , Amino Acids
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33975947

ABSTRACT

Malaria is a devastating infectious disease, which causes over 400,000 deaths per annum and impacts the lives of nearly half the world's population. The causative agent, a protozoan parasite, replicates within red blood cells (RBCs), eventually destroying the cells in a lytic process called egress to release a new generation of parasites. These invade fresh RBCs to repeat the cycle. Egress is regulated by an essential parasite subtilisin-like serine protease called SUB1. Here, we describe the development and optimization of substrate-based peptidic boronic acids that inhibit Plasmodium falciparum SUB1 with low nanomolar potency. Structural optimization generated membrane-permeable, slow off-rate inhibitors that prevent Pfalciparum egress through direct inhibition of SUB1 activity and block parasite replication in vitro at submicromolar concentrations. Our results validate SUB1 as a potential target for a new class of antimalarial drugs designed to prevent parasite replication and disease progression.


Subject(s)
Antimalarials/pharmacology , Boronic Acids/pharmacology , Peptides/pharmacology , Plasmodium falciparum/drug effects , Protozoan Proteins/chemistry , Subtilisins/chemistry , Antimalarials/chemical synthesis , Binding Sites , Boronic Acids/chemical synthesis , Drug Design , Erythrocytes/drug effects , Erythrocytes/parasitology , Gene Expression , Humans , Kinetics , Life Cycle Stages/drug effects , Life Cycle Stages/physiology , Models, Molecular , Molecular Docking Simulation , Peptides/chemical synthesis , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity , Subtilisins/antagonists & inhibitors , Subtilisins/genetics , Subtilisins/metabolism , Thermodynamics
3.
J Org Chem ; 88(14): 10306-10309, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37409448

ABSTRACT

Phragmalin-type limonoids are highly complex natural products based on an unusual octahydro-1H-2,4-methanoindene cage. The absence of feasible routes to sufficiently functionalized methanoindene cage building blocks impedes the total synthesis of these natural products. We have developed a short and robust route to methanoindene cage compounds from the Hajos-Parrish ketone (HPK). Several stereoselective modifications of the HPK provided a substrate that underwent aldol reaction as a key step for the cage formation.

4.
Org Biomol Chem ; 21(26): 5433-5439, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37335076

ABSTRACT

An analogue of a toxic moiety (TM84) of natural product agrocin 84 containing threonine amide instead of 2,3-dihydroxy-4-methylpentanamide was prepared and evaluated as a putative Plasmodium falciparum threonyl t-RNA synthetase (PfThrRS) inhibitor. This TM84 analogue features submicromolar inhibitory potency (IC50 = 440 nM) comparable to that of borrelidin (IC50 = 43 nM) and therefore complements chemotypes known to inhibit malarial PfThrRS, which are currently limited to borrelidin and its analogues. The crystal structure of the inhibitor in complex with the E. coli homologue enzyme (EcThrRS) was obtained, revealing crucial ligand-protein interactions that will pave the way for the design of novel ThrRS inhibitors.


Subject(s)
Threonine-tRNA Ligase , Escherichia coli , Adenine Nucleotides
5.
J Chem Inf Model ; 63(21): 6890-6899, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37801405

ABSTRACT

Predicting the interaction modes and binding affinities of virtual compound libraries is of great interest in drug development. It reduces the cost and time of lead compound identification and selection. Here we apply path-based metadynamics simulations to characterize the binding of potential inhibitors to the Plasmodium falciparum aspartic protease plasmepsin V (plm V), a validated antimalarial drug target that has a highly mobile binding site. The potential plm V binders were identified in a high-throughput virtual screening (HTVS) campaign and were experimentally verified in a fluorescence resonance energy transfer (FRET) assay. Our simulations allowed us to estimate compound binding energies and revealed relevant states along binding/unbinding pathways in atomistic resolution. We believe that the method described allows the prioritization of compounds for synthesis and enables rational structure-based drug design for targets that undergo considerable conformational changes upon inhibitor binding.


Subject(s)
Antimalarials , Antimalarials/pharmacology , Antimalarials/chemistry , Binding Sites , Aspartic Acid Endopeptidases/chemistry , Plasmodium falciparum , Protozoan Proteins/metabolism , Protease Inhibitors/chemistry
6.
J Nat Prod ; 86(10): 2368-2378, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37779357

ABSTRACT

The first semisynthetic routes toward terrestrial anti-inflammatory natural products linariophyllene A-C and the refined route toward marine natural product rumphellolide H are presented. Among the synthesized target compounds, the correct structure of linariophyllene A was determined to be the diastereomer of the originally proposed structure with an inverted stereocenter at the secondary alcohol. The proposed structures of linariophyllene B and rumphellolide H were confirmed. However, the correct structure of linariophyllene C was found to be the diastereomer of the originally proposed structure with an inverted stereocenter at the tertiary carbon of the epoxide moiety. The structures of linariophyllenes A-C and rumphellolide H were unequivocally confirmed by single-crystal X-ray diffractometry. The obtained results enabled the proposal of the biosynthetic origins of the aforementioned natural products and bolstered the diversity of available sesquiterpenoids. Linariophyllenes A-C and rumphellolide H were obtained in sufficient amounts to further expand their bioactivity profile and utility as reference standards in future studies of chemical constituents of terrestrial and marine organisms.


Subject(s)
Aquatic Organisms , Biological Products , Aquatic Organisms/chemistry , Biological Products/chemistry , Biosynthetic Pathways , Molecular Structure
7.
Molecules ; 28(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677825

ABSTRACT

SARS-CoV-2 nsp14 guanine-N7-methyltransferase plays an important role in the viral RNA translation process by catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to viral mRNA cap. We report a structure-guided design and synthesis of 3-(adenosylthio)benzoic acid derivatives as nsp14 methyltransferase inhibitors resulting in compound 5p with subnanomolar inhibitory activity and improved cell membrane permeability in comparison with the parent inhibitor. Compound 5p acts as a bisubstrate inhibitor targeting both SAM and mRNA-binding pockets of nsp14. While the selectivity of 3-(adenosylthio)benzoic acid derivatives against human glycine N-methyltransferase was not improved, the discovery of phenyl-substituted analogs 5p,t may contribute to further development of SARS-CoV-2 nsp14 bisubstrate inhibitors.


Subject(s)
Antiviral Agents , Methyltransferases , SARS-CoV-2 , Methylation , Methyltransferases/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Viral/genetics , S-Adenosylmethionine/chemistry , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology
8.
J Org Chem ; 87(5): 3810-3816, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35081306

ABSTRACT

1N-PMB-protected tetrazole undergoes C-H deprotonation with the turbo Grignard reagent, providing a metalated intermediate with increased stability. This can be used for the reaction with electrophiles such as aldehydes, ketones, Weinreb amides, and iodine. C-H deprotonation with the turbo Grignard reagent is compatible with the PMB-protecting group at the tetrazole, which can be cleaved using oxidative hydrogenolysis and acidic conditions. The method enables the tetrazole functionalization at the fifth position by overcoming the difficulties associated with retro [2 + 3] cycloaddition of the metalated intermediates.

9.
Org Biomol Chem ; 20(12): 2455-2461, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35254363

ABSTRACT

The convergent biomimetic gram-scale synthesis of disesquiterpenoid ester rumphellolide J is described. 4ß,8ß-Epoxycaryophyllan-5-ol was prepared in 67% yield (1.4 g) from naturally ambudant (-)-ß-caryophyllene. (+)-Rumphellaoic acid A was obtained in 46% yield (2.2 g) from (-)-caryophyllene oxide. The synthesised (+)-rumphellaoic acid had an opposite specific rotation compared to that of (-)-rumphellaoic acid A isolated from nature, indicating possible occurrence of (+)-ß-caryophyllene in Rumphella antipathies and Psidium guajava. Esterification of (+)-rumphellaoic acid A via acyl fluoride and alkoxide of 4ß,8ß-epoxycaryophyllan-5-ol gave rumphellolide J in 70% yield (1.65 g). The same structure for the synthesized product and natural isolate was proven despite the opposite specific rotation value of the intermediate acid. The short access to the terpenoids provides a material for further investigations of biological activities and valuable reference standards for the analysis of the chemical composition of various natural sources.


Subject(s)
Anthozoa , Psidium , Animals , Biomimetics , Psidium/chemistry , Terpenes
10.
J Chem Inf Model ; 62(13): 3263-3273, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35712895

ABSTRACT

Selectivity is a major issue in the development of drugs targeting pathogen aspartic proteases. Here, we explore the selectivity-determining factors by studying specifically designed malaria aspartic protease (plasmepsin) open-flap inhibitors. Metadynamics simulations are used to uncover the complex binding/unbinding pathways of these inhibitors and describe the critical transition states in atomistic resolution. The simulation results are compared with experimentally determined enzymatic activities. Our findings demonstrate that plasmepsin inhibitor selectivity can be achieved by targeting the flap loop with hydrophobic substituents that enable ligand binding under the flap loop, as such a behavior is not observed for several other aspartic proteases. The ability to estimate the selectivity of compounds before they are synthesized is of considerable importance in drug design; therefore, we expect that our approach will be useful in selective inhibitor designs against not only aspartic proteases but also other enzyme classes.


Subject(s)
Antimalarials , Aspartic Acid Endopeptidases , Plasmodium falciparum , Protease Inhibitors , Antimalarials/chemistry , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Computer Simulation , Drug Design , Malaria/drug therapy , Plasmodium falciparum/drug effects , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protozoan Proteins/chemistry
11.
J Nat Prod ; 83(6): 2004-2009, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32538090

ABSTRACT

The first semisynthetic route toward rumphellaones B (2) and C (3) and their C-8 epimers as well as the shortest synthesis of rumphellaone A (1) and its C-8 epimer from the most accessible sesquiterpene, ß-caryophyllene (4), is presented. Synthetic routes involved caryophyllonic acid as a key intermediate, which was converted to rumphellaone A (and epimer) via acid-catalyzed lactonization and rumphellaone C (and epimer) using one-pot epoxidation-lactonization. Rumphellaone B (2) and its epimer were obtained from rumphellaone A (1) and its epimer, respectively, using Saegusa-Ito oxidation. The absolute configuration at C-8 was confirmed by single-crystal X-ray analysis of rumphellaone B (2) and an acylated derivative of rumphellaone C.


Subject(s)
Polycyclic Sesquiterpenes/chemistry , Sesquiterpenes/chemical synthesis , Sesquiterpenes/pharmacology , Sesterterpenes/chemical synthesis , Sesterterpenes/pharmacology , Animals , Anthozoa/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Isomerism , Lactones/chemical synthesis , Molecular Structure , Sesquiterpenes/chemistry , X-Ray Diffraction
12.
J Org Chem ; 84(7): 3780-3792, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30854858

ABSTRACT

Directed intramolecular protonolyis of the cyclopropane C-C bond is demonstrated as a strategy to generate carbenium ions. This intermediate can be subjected to amination with nitriles under Ritter reaction conditions. Directing groups such as carbamate, carboxamide, urea, ester, and ketone were found to be efficient for regioselective anti-Markovnikov cleavage of cyclopropane. Depending on the directing group, the amination provided orthogonally protected 1,4-diamine, ε-amino carboxylic, and ε-amino ketone derivatives.

13.
J Enzyme Inhib Med Chem ; 34(1): 31-43, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30362368

ABSTRACT

The lack of efficacy of current antibacterials to treat multidrug resistant bacteria poses a life-threatening alarm. In order to develop enhancers of the antibacterial activity, we carried out a medicinal chemistry campaign aiming to develop inhibitors of enzymes that synthesise cysteine and belong to the reductive sulphur assimilation pathway, absent in mammals. Previous studies have provided a novel series of inhibitors for O-acetylsulfhydrylase - a key enzyme involved in cysteine biosynthesis. Despite displaying nanomolar affinity, the most active representative of the series was not able to interfere with bacterial growth, likely due to poor permeability. Therefore, we rationally modified the structure of the hit compound with the aim of promoting their passage through the outer cell membrane porins. The new series was evaluated on the recombinant enzyme from Salmonella enterica serovar Typhimurium, with several compounds able to keep nanomolar binding affinity despite the extent of chemical manipulation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carboxylic Acids/pharmacology , Cyclopropanes/pharmacology , Cysteine Synthase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Cyclopropanes/chemical synthesis , Cyclopropanes/chemistry , Cysteine Synthase/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli/drug effects , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Microbial Sensitivity Tests , Molecular Structure , Salmonella typhimurium/enzymology , Structure-Activity Relationship
14.
Org Biomol Chem ; 16(28): 5094-5096, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29971288

ABSTRACT

Fragmentation of electrochemically generated oxonium ions can be exploited to form carbenium ions at a low oxidation potential in the presence of a nucleophile. The application of this concept is demonstrated for the allylation of carbenium ions generated by the anodic oxidation of stannylmethylethers.

15.
Bioorg Med Chem ; 26(9): 2488-2500, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29636223

ABSTRACT

2-Aminoquinazolin-4(3H)-ones were previously discovered as perspective leads for antimalarial drug development targeting the plasmepsins. Here we report the lead optimization studies with the aim to reduce inhibitor lipophilicity and increase selectivity versus the human aspartic protease Cathepsin D. Exploiting the solvent exposed area of the enzyme provides an option to install polar groups (R1) the 5-position of 2-aminoquinazolin-4(3H)-one to inhibitors such as carboxylic acid without scarifying enzymatic potency. Moreover, introduction of R1 substituents increased selectivity factors of compounds in this series up to 100-fold for Plm II, IV vs CatD inhibition. The introduction of flap pocket substituent (R2) at 7-postion of 2-aminoquinazolin-4(3H)-one allows to remove Ph group from THF ring without notably impairing Plm inhibitory potency. Based on these findings, inhibitors were developed, which show Plm II and IV inhibitory potency in low nanomolar range and remarkable selectivity against Cathepsin D along with decreased lipophilicity and increased solubility.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protozoan Proteins/antagonists & inhibitors , Quinazolinones/chemistry , Aspartic Acid Endopeptidases/chemistry , Binding Sites , Cathepsin D/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Plasmodium falciparum/enzymology , Protease Inhibitors/chemical synthesis , Protozoan Proteins/chemistry , Quinazolinones/chemical synthesis , Solubility , Structure-Activity Relationship
16.
J Enzyme Inhib Med Chem ; 33(1): 1343-1351, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30251899

ABSTRACT

O-acetylserine sulfhydrylase (OASS) is the pyridoxal 5'-phosphate dependent enzyme that catalyses the formation of L-cysteine in bacteria and plants. Its inactivation is pursued as a strategy for the identification of novel antibiotics that, targeting dispensable proteins, holds a great promise for circumventing resistance development. In the present study, we have investigated the reactivity of Salmonella enterica serovar Typhimurium OASS-A and OASS-B isozymes with fluoroalanine derivatives. Monofluoroalanine reacts with OASS-A and OASS-B forming either a stable or a metastable α-aminoacrylate Schiff's base, respectively, as proved by spectral changes. This finding indicates that monofluoroalanine is a substrate analogue, as previously found for other beta-halogenalanine derivatives. Trifluoroalanine caused different and time-dependent absorbance and fluorescence spectral changes for the two isozymes and is associated with irreversible inhibition. The time course of enzyme inactivation was found to be characterised by a biphasic behaviour. Partially distinct inactivation mechanisms for OASS-A and OASS-B are proposed.


Subject(s)
Alanine/analogs & derivatives , Cysteine Synthase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Alanine/chemical synthesis , Alanine/chemistry , Alanine/pharmacology , Cysteine Synthase/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Salmonella enterica/enzymology , Structure-Activity Relationship
17.
J Enzyme Inhib Med Chem ; 33(1): 1444-1452, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30221554

ABSTRACT

Several bacteria rely on the reductive sulphur assimilation pathway, absent in mammals, to synthesise cysteine. Reduction of virulence and decrease in antibiotic resistance have already been associated with mutations on the genes that codify cysteine biosynthetic enzymes. Therefore, inhibition of cysteine biosynthesis has emerged as a promising strategy to find new potential agents for the treatment of bacterial infection. Following our previous efforts to explore OASS inhibition and to expand and diversify our library, a scaffold hopping approach was carried out, with the aim of identifying a novel fragment for further development. This novel chemical tool, endowed with favourable pharmacological characteristics, was successfully developed, and a preliminary Structure-Activity Relationship investigation was carried out.


Subject(s)
Cysteine Synthase/antagonists & inhibitors , Drug Design , Small Molecule Libraries/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/enzymology , Bacteria/genetics , Binding Sites , Biological Assay , Computer Simulation , DNA, Recombinant/chemistry , DNA, Recombinant/genetics , Ligands , Models, Molecular , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
18.
Arch Pharm (Weinheim) ; 351(9): e1800151, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30063266

ABSTRACT

The spread of drug-resistant malaria parasites urges the search for new antimalarial drugs. Malarial aspartic proteases - plasmepsins (Plms) - are differentially expressed in multiple stages of the Plasmodium parasite's lifecycle and are considered as attractive drug targets. We report the development of novel azole-based non-peptidomimetic plasmepsin inhibitors that have been designed by bioisosteric substitution of the amide moiety in the Actelion amino-piperazine inhibitors. The best triazole-based inhibitors show submicromolar potency toward Plm II, which is comparable to that of the parent Actelion compounds. The new inhibitors can be used as a starting point for the development of a resistance-free antimalarial drug targeting the non-digestive Plm IX or X, which are essential for the malaria parasite life cycle.


Subject(s)
Antimalarials/pharmacology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Azoles/pharmacology , Plasmodium falciparum/drug effects , Protease Inhibitors/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Aspartic Acid Endopeptidases/metabolism , Azoles/chemical synthesis , Azoles/chemistry , Parasitic Sensitivity Tests , Plasmodium falciparum/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry
19.
Antimicrob Agents Chemother ; 60(10): 6359-61, 2016 10.
Article in English | MEDLINE | ID: mdl-27431224

ABSTRACT

Bacterial aminoacyl-tRNA synthetases (aaRSs) represent promising antibacterial drug targets. Unfortunately, the aaRS inhibitors that have to date reached clinical trials are subject to rapid resistance development through mutation, a phenomenon that limits their potential clinical utility. Here, we confirm the intuitively correct idea that simultaneous targeting of two different aaRS enzymes prevents the emergence of spontaneous bacterial resistance at high frequency, a finding that supports the development of multitargeted anti-aaRS therapies.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Enzyme Inhibitors/pharmacology , Staphylococcus aureus/drug effects , Boron Compounds/pharmacology , Diamines/pharmacology , Microbial Sensitivity Tests , Molecular Targeted Therapy , Mupirocin/pharmacology , Mutation Rate , Staphylococcus aureus/genetics , Thiophenes/pharmacology
20.
Antimicrob Agents Chemother ; 60(5): 3219-21, 2016 05.
Article in English | MEDLINE | ID: mdl-26976861

ABSTRACT

GSK2251052 is a broad-spectrum antibacterial inhibitor of leucyl tRNA-synthetase (LeuRS) that has been evaluated in phase II clinical trials. Here, we report the identification of a clinical isolate of Staphylococcus aureus that exhibits reduced susceptibility to GSK2251052 without prior exposure to the compound and demonstrate that this phenotype is attributable to a single amino acid polymorphism (P329) within the editing domain of LeuRS.


Subject(s)
Anti-Bacterial Agents/pharmacology , Boron Compounds/pharmacology , Polymorphism, Genetic/genetics , Staphylococcus aureus/drug effects , Bacterial Proteins/genetics , Leucine-tRNA Ligase/genetics , Leucine-tRNA Ligase/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL