Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Immunol ; 208(12): 2702-2712, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35667842

ABSTRACT

CD8+ T cell proliferation and differentiation into effector and memory states are high-energy processes associated with changes in cellular metabolism. CD28-mediated costimulation of T cells activates the PI3K/AKT/mammalian target of rapamycin signaling pathway and induces eukaryotic translation initiation factor 4E-dependent translation through the derepression by 4E-BP1 and 4E-BP2. In this study, we demonstrate that 4E-BP1/2 proteins are required for optimum proliferation of mouse CD8+ T cells and the development of an antiviral effector function. We show that translation of genes encoding mitochondrial biogenesis is impaired in T cells derived from 4E-BP1/2-deficient mice. Our findings demonstrate an unanticipated role for 4E-BPs in regulating a metabolic program that is required for cell growth and biosynthesis during the early stages of CD8+ T cell expansion.


Subject(s)
Eukaryotic Initiation Factors , Phosphoproteins , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Cycle Proteins/metabolism , Cell Proliferation , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Mammals/genetics , Mice , Organelle Biogenesis , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Phosphorylation , Protein Biosynthesis
2.
Blood ; 138(3): 234-245, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34292323

ABSTRACT

Venetoclax, a Bcl-2 inhibitor, in combination with the hypomethylating agent azacytidine, achieves complete remission with or without count recovery in ∼70% of treatment-naive elderly patients unfit for conventional intensive chemotherapy. However, the mechanism of action of this drug combination is not fully understood. We discovered that venetoclax directly activated T cells to increase their cytotoxicity against acute myeloid leukemia (AML) in vitro and in vivo. Venetoclax enhanced T-cell effector function by increasing reactive oxygen species generation through inhibition of respiratory chain supercomplexes formation. In addition, azacytidine induced a viral mimicry response in AML cells by activating the STING/cGAS pathway, thereby rendering the AML cells more susceptible to T cell-mediated cytotoxicity. Similar findings were seen in patients treated with venetoclax, as this treatment increased reactive oxygen species generation and activated T cells. Collectively, this study presents a new immune-mediated mechanism of action for venetoclax and azacytidine in the treatment of AML and highlights a potential combination of venetoclax and adoptive cell therapy for patients with AML.


Subject(s)
Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Sulfonamides/pharmacology , T-Lymphocytes/drug effects , Adult , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cells, Cultured , Humans , Immunity, Cellular/drug effects , Leukemia, Myeloid, Acute/immunology , Reactive Oxygen Species/immunology , Sulfonamides/therapeutic use , T-Lymphocytes/immunology , Tumor Cells, Cultured
3.
Blood ; 136(1): 81-92, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32299104

ABSTRACT

Through a clustered regularly insterspaced short palindromic repeats (CRISPR) screen to identify mitochondrial genes necessary for the growth of acute myeloid leukemia (AML) cells, we identified the mitochondrial outer membrane protein mitochondrial carrier homolog 2 (MTCH2). In AML, knockdown of MTCH2 decreased growth, reduced engraftment potential of stem cells, and induced differentiation. Inhibiting MTCH2 in AML cells increased nuclear pyruvate and pyruvate dehydrogenase (PDH), which induced histone acetylation and subsequently promoted the differentiation of AML cells. Thus, we have defined a new mechanism by which mitochondria and metabolism regulate AML stem cells and gene expression.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/physiology , Neoplasm Proteins/physiology , Acetylation , Animals , CRISPR-Cas Systems , Cell Differentiation , Cell Line, Tumor , Cell Nucleus/metabolism , Fetal Blood/cytology , Gene Expression Regulation, Leukemic/genetics , Gene Knockdown Techniques , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Myeloid-Lymphoid Leukemia Protein/physiology , Oncogene Proteins, Fusion/physiology , Protein Processing, Post-Translational , Pyruvic Acid/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology
4.
Haematologica ; 104(5): 963-972, 2019 05.
Article in English | MEDLINE | ID: mdl-30573504

ABSTRACT

Mitochondrial DNA encodes 13 proteins that comprise components of the respiratory chain that maintain oxidative phosphorylation. The replication of mitochondrial DNA is performed by the sole mitochondrial DNA polymerase γ. As acute myeloid leukemia (AML) cells and stem cells have an increased reliance on oxidative phosphorylation, we sought to evaluate polymerase γ inhibitors in AML. The thymidine dideoxynucleoside analog, alovudine, is an inhibitor of polymerase γ. In AML cells, alovudine depleted mitochondrial DNA, reduced mitochondrial encoded proteins, decreased basal oxygen consumption, and decreased cell proliferation and viability. To evaluate the effects of polymerase γ inhibition with alovudine in vivo, mice were xenografted with OCI-AML2 cells and then treated with alovudine. Systemic administration of alovudine reduced leukemic growth without evidence of toxicity and decreased levels of mitochondrial DNA in the leukemic cells. We also showed that alovudine increased the monocytic differentiation of AML cells. Genetic knockdown and other chemical inhibitors of polymerase γ also promoted AML differentiation, but the effects on AML differentiation were independent of reductions in oxidative phosphorylation or respiratory chain proteins. Thus, we have identified a novel mechanism by which mitochondria regulate AML fate and differentiation independent of oxidative phosphorylation. Moreover, we highlight polymerase γ inhibitors, such as alovudine, as novel therapeutic agents for AML.


Subject(s)
Cell Differentiation/drug effects , DNA Polymerase gamma/antagonists & inhibitors , Dideoxynucleosides/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Mitochondria/pathology , Monocytes/pathology , Oxidative Phosphorylation/drug effects , Animals , Antiviral Agents/pharmacology , Apoptosis , Cell Proliferation , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondria/drug effects , Mitochondria/metabolism , Monocytes/drug effects , Monocytes/metabolism , Thymidine/chemistry , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Blood ; 125(13): 2120-30, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25631767

ABSTRACT

Mitochondrial respiration is a crucial component of cellular metabolism that can become dysregulated in cancer. Compared with normal hematopoietic cells, acute myeloid leukemia (AML) cells and patient samples have higher mitochondrial mass, without a concomitant increase in respiratory chain complex activity. Hence these cells have a lower spare reserve capacity in the respiratory chain and are more susceptible to oxidative stress. We therefore tested the effects of increasing the electron flux through the respiratory chain as a strategy to induce oxidative stress and cell death preferentially in AML cells. Treatment with the fatty acid palmitate induced oxidative stress and cell death in AML cells, and it suppressed tumor burden in leukemic cell lines and primary patient sample xenografts in the absence of overt toxicity to normal cells and organs. These data highlight a unique metabolic vulnerability in AML, and identify a new therapeutic strategy that targets abnormal oxidative metabolism in this malignancy.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Oxidative Stress/physiology , Oxygen Consumption , Cell Death , Cell Respiration , Electron Transport , Humans , Mitochondrial Size , Oxygen Consumption/physiology , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
6.
Apoptosis ; 20(8): 1099-108, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25998464

ABSTRACT

AML (acute myeloid leukemia) cells have a unique reliance on mitochondrial metabolism and fatty acid oxidation (FAO). Thus, blocking FAO is a potential therapeutic strategy to target these malignant cells. In the current study, we assessed plasma membrane carnitine transporters as novel therapeutic targets for AML. We examined the expression of the known plasma membrane carnitine transporters, OCTN1, OCTN2, and CT2 in AML cell lines and primary AML samples and compared expression to normal hematopoietic cells. Of the three carnitine transporters, CT2 demonstrated the greatest differential expression between AML and normal cells. Using shRNA, we knocked down CT2 and demonstrated that target knockdown impaired the function of the transporter. In addition, knockdown of CT2 reduced the growth and viability of AML cells with high expression of CT2 (OCI-AML2 and HL60), but not low expression. CT2 knockdown reduced basal oxygen consumption without a concomitant increase in glycolysis. Thus, CT2 may be a novel target for a subset of AML.


Subject(s)
Cell Proliferation/drug effects , Leukemia, Myeloid, Acute/metabolism , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , RNA, Small Interfering/pharmacology , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Gene Knockdown Techniques , Humans , Oxygen/metabolism
7.
Am J Hematol ; 89(4): 363-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24273151

ABSTRACT

The antimycotic ciclopirox olamine is an intracellular iron chelator that has anticancer activity in vitro and in vivo. We developed an oral formulation of ciclopirox olamine and conducted the first-in-human phase I study of this drug in patients with relapsed or refractory hematologic malignancies (Trial registration ID: NCT00990587). Patients were treated with 5-80 mg/m² oral ciclopirox olamine once daily for five days in 21-day treatment cycles. Pharmacokinetic and pharmacodynamic companion studies were performed in a subset of patients. Following definition of the half-life of ciclopirox olamine, an additional cohort was enrolled and treated with 80 mg/m² ciclopirox olamine four times daily. Adverse events and clinical response were monitored throughout the trial. Twenty-three patients received study treatment. Ciclopirox was rapidly absorbed and cleared with a short half-life. Plasma concentrations of an inactive ciclopirox glucuronide metabolite were greater than those of ciclopirox. Repression of survivin expression was observed in peripheral blood cells isolated from patients treated once daily with ciclopirox olamine at doses greater than 10 mg/m², demonstrating biological activity of the drug. Dose-limiting gastrointestinal toxicities were observed in patients receiving 80 mg/m² four times daily, and no dose limiting toxicity was observed at 40 mg/m² once daily. Hematologic improvement was observed in two patients. Once-daily dosing of oral ciclopirox olamine was well tolerated in patients with relapsed or refractory hematologic malignancies, and further optimization of dosing regimens is warranted in this patient population.


Subject(s)
Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/drug therapy , Iron Chelating Agents/therapeutic use , Pyridones/therapeutic use , Salvage Therapy , Administration, Oral , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Ciclopirox , Female , Gastrointestinal Diseases/chemically induced , Gene Expression Regulation, Neoplastic/drug effects , Half-Life , Hematologic Neoplasms/blood , Hematologic Neoplasms/pathology , Humans , Inactivation, Metabolic , Inhibitor of Apoptosis Proteins/genetics , Iron Chelating Agents/administration & dosage , Iron Chelating Agents/adverse effects , Iron Chelating Agents/metabolism , Iron Chelating Agents/pharmacokinetics , Male , Middle Aged , Neoplasm Proteins/genetics , Pyridones/adverse effects , Pyridones/blood , Pyridones/pharmacokinetics , RNA, Messenger/blood , RNA, Neoplasm/blood , Survivin , Treatment Outcome
8.
Signal Transduct Target Ther ; 7(1): 51, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35185150

ABSTRACT

Despite high initial response rates, acute myeloid leukemia (AML) treated with the BCL-2-selective inhibitor venetoclax (VEN) alone or in combinations commonly acquires resistance. We performed gene/protein expression, metabolomic and methylation analyses of isogenic AML cell lines sensitive or resistant to VEN, and identified the activation of RAS/MAPK pathway, leading to increased stability and higher levels of MCL-1 protein, as a major acquired mechanism of VEN resistance. MCL-1 sustained survival and maintained mitochondrial respiration in VEN-RE cells, which had impaired electron transport chain (ETC) complex II activity, and MCL-1 silencing or pharmacologic inhibition restored VEN sensitivity. In support of the importance of RAS/MAPK activation, we found by single-cell DNA sequencing rapid clonal selection of RAS-mutated clones in AML patients treated with VEN-containing regimens. In summary, these findings establish RAS/MAPK/MCL-1 and mitochondrial fitness as key survival mechanisms of VEN-RE AML and provide the rationale for combinatorial strategies effectively targeting these pathways.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , MAP Kinase Signaling System , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , ras Proteins , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , MAP Kinase Signaling System/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology
9.
Sci Transl Med ; 12(538)2020 04 08.
Article in English | MEDLINE | ID: mdl-32269163

ABSTRACT

Neurolysin (NLN) is a zinc metallopeptidase whose mitochondrial function is unclear. We found that NLN was overexpressed in almost half of patients with acute myeloid leukemia (AML), and inhibition of NLN was selectively cytotoxic to AML cells and stem cells while sparing normal hematopoietic cells. Mechanistically, NLN interacted with the mitochondrial respiratory chain. Genetic and chemical inhibition of NLN impaired oxidative metabolism and disrupted the formation of respiratory chain supercomplexes (RCS). Furthermore, NLN interacted with the known RCS regulator, LETM1, and inhibition of NLN disrupted LETM1 complex formation. RCS were increased in patients with AML and positively correlated with NLN expression. These findings demonstrate that inhibiting RCS formation selectively targets AML cells and stem cells and highlights the therapeutic potential of pharmacologically targeting NLN in AML.


Subject(s)
Leukemia, Myeloid, Acute , Peptide Hydrolases , Electron Transport , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Metalloendopeptidases , Mitochondria/metabolism , Peptide Hydrolases/metabolism
10.
Cell Stem Cell ; 26(6): 926-937.e10, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32416059

ABSTRACT

Leukemic stem cells (LSCs) rely on oxidative metabolism and are differentially sensitive to targeting mitochondrial pathways, which spares normal hematopoietic cells. A subset of mitochondrial proteins is folded in the intermembrane space via the mitochondrial intermembrane assembly (MIA) pathway. We found increased mRNA expression of MIA pathway substrates in acute myeloid leukemia (AML) stem cells. Therefore, we evaluated the effects of inhibiting this pathway in AML. Genetic and chemical inhibition of ALR reduces AML growth and viability, disrupts LSC self-renewal, and induces their differentiation. ALR inhibition preferentially decreases its substrate COX17, a mitochondrial copper chaperone, and knockdown of COX17 phenocopies ALR loss. Inhibiting ALR and COX17 increases mitochondrial copper levels which in turn inhibit S-adenosylhomocysteine hydrolase (SAHH) and lower levels of S-adenosylmethionine (SAM), DNA methylation, and chromatin accessibility to lower LSC viability. These results provide insight into mechanisms through which mitochondrial copper controls epigenetic status and viability of LSCs.


Subject(s)
Cell Self Renewal , Leukemia, Myeloid, Acute , Cell Differentiation , Copper , Humans , Neoplastic Stem Cells
11.
J Med Chem ; 62(13): 6377-6390, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31187989

ABSTRACT

Boronic acids have attracted the attention of synthetic and medicinal chemists due to boron's ability to modulate enzyme function. Recently, we demonstrated that boron-containing amphoteric building blocks facilitate the discovery of bioactive aminoboronic acids. Herein, we have augmented this capability with a de novo library design and a virtual screening platform modified for covalent ligands. This technique has allowed us to rapidly design and identify a series of α-aminoboronic acids as the first inhibitors of human ClpXP, which is responsible for the degradation of misfolded proteins.


Subject(s)
Boronic Acids/chemistry , Endopeptidase Clp/antagonists & inhibitors , Peptidomimetics/chemistry , Boronic Acids/chemical synthesis , Boronic Acids/metabolism , Drug Design , Endopeptidase Clp/metabolism , Enzyme Assays , Humans , Peptide Library , Peptidomimetics/chemical synthesis , Peptidomimetics/metabolism , Protein Binding , Staphylococcus aureus/enzymology , Stereoisomerism
12.
Cancer Cell ; 35(5): 721-737.e9, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31056398

ABSTRACT

The mitochondrial caseinolytic protease P (ClpP) plays a central role in mitochondrial protein quality control by degrading misfolded proteins. Using genetic and chemical approaches, we showed that hyperactivation of the protease selectively kills cancer cells, independently of p53 status, by selective degradation of its respiratory chain protein substrates and disrupts mitochondrial structure and function, while it does not affect non-malignant cells. We identified imipridones as potent activators of ClpP. Through biochemical studies and crystallography, we show that imipridones bind ClpP non-covalently and induce proteolysis by diverse structural changes. Imipridones are presently in clinical trials. Our findings suggest a general concept of inducing cancer cell lethality through activation of mitochondrial proteolysis.


Subject(s)
Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Mitochondria/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Endopeptidase Clp/chemistry , Female , HCT116 Cells , HEK293 Cells , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Imidazoles , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Models, Molecular , Point Mutation , Protein Conformation/drug effects , Proteolysis , Pyridines , Pyrimidines , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
13.
Cell Stem Cell ; 24(4): 621-636.e16, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30930145

ABSTRACT

Tafazzin (TAZ) is a mitochondrial transacylase that remodels the mitochondrial cardiolipin into its mature form. Through a CRISPR screen, we identified TAZ as necessary for the growth and viability of acute myeloid leukemia (AML) cells. Genetic inhibition of TAZ reduced stemness and increased differentiation of AML cells both in vitro and in vivo. In contrast, knockdown of TAZ did not impair normal hematopoiesis under basal conditions. Mechanistically, inhibition of TAZ decreased levels of cardiolipin but also altered global levels of intracellular phospholipids, including phosphatidylserine, which controlled AML stemness and differentiation by modulating toll-like receptor (TLR) signaling.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Mitochondria/enzymology , Phospholipids/metabolism , Transcription Factors/metabolism , Acyltransferases , Animals , Cell Line, Tumor , Doxorubicin/pharmacology , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Signal Transduction/drug effects , Toll-Like Receptors/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/deficiency
15.
Cancer Med ; 5(11): 3031-3040, 2016 11.
Article in English | MEDLINE | ID: mdl-27734609

ABSTRACT

Acute myeloid leukemia (AML) cells meet the higher energy, metabolic, and signaling demands of the cell by increasing mitochondrial biogenesis and mitochondrial protein translation. Blocking mitochondrial protein synthesis through genetic and chemical approaches kills human AML cells at all stages of development in vitro and in vivo. Tigecycline is an antimicrobial that we found inhibits mitochondrial protein synthesis in AML cells. Therefore, we conducted a phase 1 dose-escalation study of tigecycline administered intravenously daily 5 of 7 days for 2 weeks to patients with AML. A total of 27 adult patients with relapsed and refractory AML were enrolled in this study with 42 cycles being administered over seven dose levels (50-350 mg/day). Two patients experienced DLTs related to tigecycline at the 350 mg/day level resulting in a maximal tolerated dose of tigecycline of 300 mg as a once daily infusion. Pharmacokinetic experiments showed that tigecycline had a markedly shorter half-life in these patients than reported for noncancer patients. No significant pharmacodynamic changes or clinical responses were observed. Thus, we have defined the safety of once daily tigecycline in patients with refractory AML. Future studies should focus on schedules of the drug that permit more sustained target inhibition.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Minocycline/analogs & derivatives , Adult , Aged , Aged, 80 and over , Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/pharmacokinetics , Drug Monitoring , Drug Resistance, Neoplasm , Female , Humans , Infusions, Intravenous , Leukemia, Myeloid, Acute/diagnosis , Male , Maximum Tolerated Dose , Middle Aged , Minocycline/administration & dosage , Minocycline/adverse effects , Minocycline/pharmacokinetics , Mitochondria/drug effects , Mitochondria/metabolism , Recurrence , Retreatment , Risk Assessment , Tigecycline , Treatment Outcome
16.
Cancer Cell ; 27(6): 864-76, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26058080

ABSTRACT

From an shRNA screen, we identified ClpP as a member of the mitochondrial proteome whose knockdown reduced the viability of K562 leukemic cells. Expression of this mitochondrial protease that has structural similarity to the cytoplasmic proteosome is increased in leukemic cells from approximately half of all patients with AML. Genetic or chemical inhibition of ClpP killed cells from both human AML cell lines and primary samples in which the cells showed elevated ClpP expression but did not affect their normal counterparts. Importantly, Clpp knockout mice were viable with normal hematopoiesis. Mechanistically, we found that ClpP interacts with mitochondrial respiratory chain proteins and metabolic enzymes, and knockdown of ClpP in leukemic cells inhibited oxidative phosphorylation and mitochondrial metabolism.


Subject(s)
Endopeptidase Clp/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/enzymology , Animals , Endopeptidase Clp/metabolism , Heterografts , Humans , Male , Mice , Mice, Knockout , Mice, SCID , RNA, Small Interfering/genetics
17.
PLoS One ; 9(5): e95281, 2014.
Article in English | MEDLINE | ID: mdl-24871339

ABSTRACT

Tigecycline is a broad-spectrum, first-in-class glycylcycline antibiotic currently used to treat complicated skin and intra-abdominal infections, as well as community-acquired pneumonia. In addition, we have demonstrated that tigecycline also has in vitro and in vivo activity against acute myeloid leukemia (AML) due to its ability to inhibit mitochondrial translation. Tigecycline is relatively unstable after reconstitution, and this instability may limit the use of the drug in ambulatory infusions for the treatment of infection and may prevent the development of optimal dosing schedules for the treatment of AML. This study sought to identify a formulation that improved the stability of the drug after reconstitution and maintained its antimicrobial and antileukemic activity. A panel of chemical additives was tested to identify excipients that enhanced the stability of tigecycline in solution at room temperature for up to one week. We identified a novel formulation containing the oxygen-reducing agents ascorbic acid (3 mg/mL) and pyruvate (60 mg/mL), in saline solution, pH 7.0, in which tigecycline (1 mg/mL) remained intact when protected from light for at least 7 days. This formulation also preserved the drug's antibacterial and antileukemic activity in vitro. Moreover, the novel formulation retained tigecycline's antileukemic activity in vivo. Thus, we identified and characterized a novel formulation for tigecycline that preserves its stability and efficacy after reconstitution.


Subject(s)
Anti-Bacterial Agents/chemistry , Leukemia, Myeloid, Acute/drug therapy , Minocycline/analogs & derivatives , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Ascorbic Acid/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Drug Stability , Humans , Immunoblotting , Mice , Mice, SCID , Minocycline/chemistry , Minocycline/pharmacokinetics , Minocycline/pharmacology , Minocycline/therapeutic use , Pyruvic Acid/chemistry , Tigecycline
18.
PLoS One ; 9(2): e89889, 2014.
Article in English | MEDLINE | ID: mdl-24587102

ABSTRACT

Uroporphyrinogen decarboxylase (UROD) catalyzes the conversion of uroporphyrinogen to coproporphyrinogen during heme biosynthesis. This enzyme was recently identified as a potential anticancer target; its inhibition leads to an increase in reactive oxygen species, likely mediated by the Fenton reaction, thereby decreasing cancer cell viability and working in cooperation with radiation and/or cisplatin. Because there is no known chemical UROD inhibitor suitable for use in translational studies, we aimed to design, synthesize, and characterize such a compound. Initial in silico-based design and docking analyses identified a potential porphyrin analogue that was subsequently synthesized. This species, a porphodimethene (named PI-16), was found to inhibit UROD in an enzymatic assay (IC50 = 9.9 µM), but did not affect porphobilinogen deaminase (at 62.5 µM), thereby exhibiting specificity. In cellular assays, PI-16 reduced the viability of FaDu and ME-180 cancer cells with half maximal effective concentrations of 22.7 µM and 26.9 µM, respectively, and only minimally affected normal oral epithelial (NOE) cells. PI-16 also combined effectively with radiation and cisplatin, with potent synergy being observed in the case of cisplatin in FaDu cells (Chou-Talalay combination index <1). This work presents the first known synthetic UROD inhibitor, and sets the foundation for the design, synthesis, and characterization of higher affinity and more effective UROD inhibitors.


Subject(s)
Models, Molecular , Porphyrins/chemical synthesis , Recombinant Proteins/metabolism , Uroporphyrinogen Decarboxylase/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Epithelial Cells/drug effects , Humans , Inhibitory Concentration 50 , Molecular Structure , Porphyrins/chemistry , Porphyrins/pharmacology , Recombinant Proteins/chemistry , Substrate Specificity , Uroporphyrinogen Decarboxylase/chemistry
20.
Science ; 344(6180): 208-11, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24723613

ABSTRACT

Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.


Subject(s)
Cells/drug effects , Drug Evaluation, Preclinical/methods , Drug Resistance/genetics , Gene Regulatory Networks , Genome-Wide Association Study/methods , Small Molecule Libraries/pharmacology , Cell Line, Tumor , Haploinsufficiency , Humans , Pharmacogenetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL