Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biomacromolecules ; 25(5): 2740-2748, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38563478

ABSTRACT

A self-immolative radiocontrast polymer agent has been newly designed for this study. The polymer agent is composed of a degradable poly(benzyl ether)-based backbone that enables complete and spontaneous depolymerization upon exposure to a specific stimulus, with iodophenyl pendant groups that confer a radiodensity comparable to that of commercial agents. In particular, when incorporated into a biodegradable polycaprolactone matrix, the agent not only reinforces the matrix and provides prolonged radiopacity without leaching but also governs the overall degradation kinetics of the composite under basic aqueous conditions, allowing for X-ray tracking and exhibiting a predictable degradation until the end of its lifespan. Our design would be advanced with various other components to produce synergistic functions and extended for applications in implantable biodegradable devices and theragnostic systems.


Subject(s)
Contrast Media , Polyesters , Contrast Media/chemistry , Contrast Media/chemical synthesis , Polyesters/chemistry , Polyesters/chemical synthesis , Polymers/chemistry , X-Rays
2.
Mol Psychiatry ; 26(9): 5087-5096, 2021 09.
Article in English | MEDLINE | ID: mdl-33483691

ABSTRACT

The fine-tuning of neuroinflammation is crucial for brain homeostasis as well as its immune response. The transcription factor, nuclear factor-κ-B (NFκB) is a key inflammatory player that is antagonized via anti-inflammatory actions exerted by the glucocorticoid receptor (GR). However, technical limitations have restricted our understanding of how GR is involved in the dynamics of NFκB in vivo. In this study, we used an improved lentiviral-based reporter to elucidate the time course of NFκB and GR activities during behavioral changes from sickness to depression induced by a systemic lipopolysaccharide challenge. The trajectory of NFκB activity established a behavioral basis for the NFκB signal transition involved in three phases, sickness-early-phase, normal-middle-phase, and depressive-like-late-phase. The temporal shift in brain GR activity was differentially involved in the transition of NFκB signals during the normal and depressive-like phases. The middle-phase GR effectively inhibited NFκB in a glucocorticoid-dependent manner, but the late-phase GR had no inhibitory action. Furthermore, we revealed the cryptic role of basal GR activity in the early NFκB signal transition, as evidenced by the fact that blocking GR activity with RU486 led to early depressive-like episodes through the emergence of the brain NFκB activity. These results highlight the inhibitory action of GR on NFκB by the basal and activated hypothalamic-pituitary-adrenal (HPA)-axis during body-to-brain inflammatory spread, providing clues about molecular mechanisms underlying systemic inflammation caused by such as COVID-19 infection, leading to depression.


Subject(s)
Depression/metabolism , NF-kappa B , Receptors, Glucocorticoid , Animals , Brain/metabolism , Hypothalamo-Hypophyseal System/metabolism , Mice , NF-kappa B/metabolism , Pituitary-Adrenal System/metabolism , Receptors, Glucocorticoid/metabolism
3.
ACS Sens ; 8(12): 4542-4553, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38052588

ABSTRACT

Despite the increasing number of stents implanted each year worldwide, patients remain at high risk for developing in-stent restenosis. Various self-reporting stents have been developed to address this challenge, but their practical utility has been limited by low sensitivity and limited data collection. Herein, we propose a next-generation self-reporting stent that can monitor blood pressure and blood flow inside the blood arteries. This proposed self-reporting stent utilizes a larger inductor coil encapsulated on the entire surface of the stent strut, resulting in a 2-fold increase in the sensing resolution and coupling distance between the sensor and external antenna. The dual-pressure sensors enable the detection of blood flow in situ. The feasibility of the proposed self-reporting stent is successfully demonstrated through in vivo analysis in rats, verifying its biocompatibility and multifunctional utilities. This multifunctional self-reporting stent has the potential to greatly improve cardiovascular care by providing real-time monitoring and unprecedented insight into the functional dynamics of the heart.


Subject(s)
Coronary Restenosis , Humans , Animals , Rats , Coronary Restenosis/diagnosis , Coronary Restenosis/etiology , Stents/adverse effects
4.
Nat Commun ; 10(1): 3369, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358754

ABSTRACT

Inhibitory interneurons are integral to sensory processing, yet revealing their cell type-specific roles in sensory circuits remains an ongoing focus. To Investigate the mouse olfactory system, we selectively remove GABAergic transmission from a subset of olfactory bulb interneurons, EPL interneurons (EPL-INs), and assay odor responses from their downstream synaptic partners - tufted cells and mitral cells. Using a combination of in vivo electrophysiological and imaging analyses, we find that inactivating this single node of inhibition leads to differential effects in magnitude, reliability, tuning width, and temporal dynamics between the two principal neurons. Furthermore, tufted and not mitral cell responses to odor mixtures become more linearly predictable without EPL-IN inhibition. Our data suggest that olfactory bulb interneurons, through exerting distinct inhibitory functions onto their different synaptic partners, play a significant role in the processing of odor information.


Subject(s)
Interneurons/physiology , Neural Inhibition/physiology , Neurons/physiology , Olfactory Bulb/physiology , Olfactory Pathways/physiology , Animals , Interneurons/cytology , Interneurons/metabolism , Mice, Knockout , Mice, Transgenic , Neural Inhibition/genetics , Neurons/cytology , Neurons/metabolism , Odorants , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Smell , Synaptic Transmission/genetics , Synaptic Transmission/physiology
5.
Biol Open ; 8(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30341106

ABSTRACT

Bioluminescence imaging has proven to be a highly sensitive technique for assessing in vitro transcriptional activity toward understanding gene regulation patterns; however, application of this technique is limited for brain research. In particular, the poor spatiotemporal resolution is a major hurdle for monitoring the dynamic changes of transcriptional activity in specific regions of the brain during longitudinal analysis of living animals. To overcome this limitation, in this study, we modified a lentivirus-based luciferase glucocorticoid receptor (GR) reporter by inserting destabilizing sequence genes, and then the reporter was stereotaxically injected in the mouse infralimbic prefrontal cortex (IL-PFC). Using this strategy, we could successfully pin-point and monitor the dynamic changes in GR activity in IL-PFC during normal stress adaptation. The modified reporter showed a 1.5-fold increase in temporal resolution for monitoring GR activity compared to the control, with respect to the intra-individual coefficients of variation. This novel in vivo method has broad applications, as it is readily adaptable to different types of transcription factor arrays as well spanning wide target regions of the brain to other organs and tissues.

SELECTION OF CITATIONS
SEARCH DETAIL