Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters

Publication year range
1.
Nature ; 622(7983): 471-475, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37758953

ABSTRACT

Resonant oscillators with stable frequencies and large quality factors help us to keep track of time with high precision. Examples range from quartz crystal oscillators in wristwatches to atomic oscillators in atomic clocks, which are, at present, our most precise time measurement devices1. The search for more stable and convenient reference oscillators is continuing2-6. Nuclear oscillators are better than atomic oscillators because of their naturally higher quality factors and higher resilience against external perturbations7-9. One of the most promising cases is an ultra-narrow nuclear resonance transition in 45Sc between the ground state and the 12.4-keV isomeric state with a long lifetime of 0.47 s (ref. 10). The scientific potential of 45Sc was realized long ago, but applications require 45Sc resonant excitation, which in turn requires accelerator-driven, high-brightness X-ray sources11 that have become available only recently. Here we report on resonant X-ray excitation of the 45Sc isomeric state by irradiation of Sc-metal foil with 12.4-keV photon pulses from a state-of-the-art X-ray free-electron laser and subsequent detection of nuclear decay products. Simultaneously, the transition energy was determined as [Formula: see text] with an uncertainty that is two orders of magnitude smaller than the previously known values. These advancements enable the application of this isomer in extreme metrology, nuclear clock technology, ultra-high-precision spectroscopy and similar applications.

2.
J Synchrotron Radiat ; 31(Pt 3): 596-604, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38587894

ABSTRACT

The Materials Imaging and Dynamics (MID) instrument at the European X-ray Free-Electron Laser Facility (EuXFEL) is equipped with a multipurpose diagnostic end-station (DES) at the end of the instrument. The imager unit in DES is a key tool for aligning the beam to a standard trajectory and for adjusting optical elements such as focusing lenses or the split-and-delay line. Furthermore, the DES features a bent-diamond-crystal spectrometer to disperse the spectrum of the direct beam to a line detector. This enables pulse-resolved characterization of the EuXFEL spectrum to provide X-ray energy calibration, and the spectrometer is particularly useful in commissioning special modes of the accelerator. Together with diamond-based intensity monitors, the imager and spectrometer form the DES unit which also contains a heavy-duty beamstop at the end of the MID instrument. Here, we describe the setup in detail and provide exemplary beam diagnostic results.

3.
Opt Express ; 31(2): 3315-3324, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785327

ABSTRACT

The ability of pulsed nature of synchrotron radiation opens up the possibility of studying microsecond dynamics in complex materials via speckle-based techniques. Here, we present the study of measuring the dynamics of a colloidal system by combining single and multiple X-ray pulses of a storage ring. In addition, we apply speckle correlation techniques at various pulse patterns to collect correlation functions from nanoseconds to milliseconds. The obtained sample dynamics from all correlation techniques at different pulse patterns are in very good agreement with the expected dynamics of Brownian motions of silica nanoparticles in water. Our study will pave the way for future pulsed X-ray investigations at various synchrotron X-ray sources using individual X-ray pulse patterns.

4.
Opt Lett ; 47(2): 293-296, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35030590

ABSTRACT

Three-dimensional photon correlation spectroscopy (3D PCS) is a well-known technique developed to suppress multiple scattering contributions in correlation functions, which are inevitably involved when an optical laser is employed to investigate dynamics in a turbid system. Here, we demonstrate a proof-of-principle study of 3D PCS in the hard X-ray regime. We employ an X-ray optical cross-correlator to measure the dynamics of silica colloidal nanoparticles dispersed in polypropylene glycol. The obtained cross correlation functions show very good agreement with auto-correlation measurements. This demonstration provides the foundation for X-ray speckle-based studies of very densely packed soft matter systems.

5.
Proc Natl Acad Sci U S A ; 113(48): 13618-13623, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27791068

ABSTRACT

Solution studies have proposed that crystal nucleation can take more complex pathways than previously expected in classical nucleation theory, such as formation of prenucleation clusters or densified amorphous/liquid phases. These findings show that it is possible to separate fluctuations in the different order parameters governing crystal nucleation, that is, density and structure. However, a direct observation of the multipathways from aqueous solutions remains a great challenge because heterogeneous nucleation sites, such as container walls, can prevent these paths. Here, we demonstrate the existence of multiple pathways of nucleation in highly supersaturated aqueous KH2PO4 (KDP) solution using the combination of a containerless device (electrostatic levitation), and in situ micro-Raman and synchrotron X-ray scattering. Specifically, we find that, at an unprecedentedly deep level of supersaturation, a high-concentration KDP solution first transforms into a metastable crystal before reaching stability at room temperature. However, a low-concentration solution, with different local structures, directly transforms into the stable crystal phase. These apparent multiple pathways of crystallization depend on the degree of supersaturation.

6.
Opt Express ; 22(18): 21567-76, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25321536

ABSTRACT

We report an alternate light scattering approach to measure intermediate scattering function and structures of colloidal suspension by using two-pulse speckle contrast correlation analysis. By systematically controlling time-delays between two laser pulses incident on the sample, we are able to monitor transient evolution of coherent diffraction pattern, from which particle dynamics at different length and time scales are obtained simultaneously. Our result demonstrates the feasibility of utilizing a megapixel detector to achieve sufficient data statistics in a short amount of time while enabling microsecond time-resolution. Ultimately, this method provides means to measure high-speed dynamics well beyond the time response limit of a large area two-dimensional (2D) detector.

7.
Materials (Basel) ; 16(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068194

ABSTRACT

The precise control and understanding of heat flow in heterostructures is pivotal for advancements in thermoelectric energy conversion, thermal barrier coatings, and efficient heat management in electronic and optoelectronic devices. In this study, we employ high-angular-resolution time-resolved X-ray diffraction to structurally measure thermal resistance in a laser-excited AlGaAs/GaAs semiconductor heterostructure. Our methodology offers femtometer-scale spatial sensitivity and nanosecond time resolution, enabling us to directly observe heat transport across a buried interface. We corroborate established Thermal Boundary Resistance (TBR) values for AlGaAs/GaAs heterostructures and demonstrate that TBR arises from material property discrepancies on either side of a nearly flawless atomic interface. This work not only sheds light on the fundamental mechanisms governing heat flow across buried interfaces but also presents a robust experimental framework that can be extended to other heterostructure systems, paving the way for optimized thermal management in next-generation devices.

8.
Sci Rep ; 12(1): 16606, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36198711

ABSTRACT

Scattering of energetic charge carriers and their coupling to lattice vibrations (phonons) in dielectric materials and semiconductors are crucial processes that determine the functional limits of optoelectronics, photovoltaics, and photocatalysts. The strength of these energy exchanges is often described by the electron-phonon coupling coefficient, which is difficult to measure due to the microscopic time- and length-scales involved. In the present study, we propose an alternate means to quantify the coupling parameter along with thermal boundary resistance and electron conductivity by performing a high angular-resolution time-resolved X-ray diffraction measurement of propagating lattice deformation following laser excitation of a nanoscale, polycrystalline metal film on a semiconductor substrate. Our data present direct experimental evidence for identifying the ballistic and diffusive transport components occurring at the interface, where only the latter participates in thermal diffusion. This approach provides a robust measurement that can be applied to investigate microscopic energy transport in various solid-state materials.

9.
IUCrJ ; 8(Pt 1): 124-130, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33520248

ABSTRACT

X-ray photon correlation spectroscopy (XPCS) is a routine technique to study slow dynamics in complex systems at storage-ring sources. Achieving nanosecond time resolution with the conventional XPCS technique is, however, still an experimentally challenging task requiring fast detectors and sufficient photon flux. Here, the result of a nanosecond XPCS study of fast colloidal dynamics is shown by employing an adaptive gain integrating pixel detector (AGIPD) operated at frame rates of the intrinsic pulse structure of the storage ring. Correlation functions from single-pulse speckle patterns with the shortest correlation time of 192 ns have been calculated. These studies provide an important step towards routine fast XPCS studies at storage rings.

10.
Chem Sci ; 12(1): 179-187, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-34163588

ABSTRACT

For over two decades, NaCl nucleation from a supersaturated aqueous solution has been predicted to occur via a two-step nucleation (TSN) mechanism, i.e., two sequential events, the formation of locally dense liquid regions followed by structural ordering. However, the formation of dense liquid regions in the very early stage of TSN has never been experimentally observed. By using a state-of-the-art technique, a combination of electrostatic levitation (ESL) and in situ synchrotron X-ray and Raman scatterings, we find experimental evidence that indicates the formation of dense liquid regions in NaCl bulk solution at an unprecedentedly high level of supersaturation (S = 2.31). As supersaturation increases, evolution of ion clusters leads to chemical ordering, but no topological ordering, which is a precursor for forming the dense disordered regions of ion clusters at the early stage of TSN. Moreover, as the ion clusters proceed to evolve under highly supersaturated conditions, we observe the breakage of the water hydration structure indicating the stability limit of the dense liquid regions, and thus leading to nucleation. The evolution of solute clusters and breakage of hydration in highly supersaturated NaCl bulk solution will provide new insights into the detailed mechanism of TSN for many other aqueous solutions.

11.
Sci Rep ; 9(1): 3300, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30824784

ABSTRACT

We characterize the spatial and temporal coherence properties of hard X-ray pulses from the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL, Pohang, Korea). The measurement of the single-shot speckle contrast, together with the introduction of corrections considering experimental conditions, allows obtaining an intrinsic degree of transverse coherence of 0.85 ± 0.06. In the Self-Amplified Spontaneous Emission regime, the analysis of the intensity distribution of X-ray pulses also provides an estimate for the number of longitudinal modes. For monochromatic and pink (i.e. natural bandwidth provided by the first harmonic of the undulator) beams, we observe that the number of temporal modes is 6.0 ± 0.4 and 90.0 ± 7.2, respectively. Assuming a coherence time of 2.06 fs and 0.14 fs for the monochromatic and pink beam respectively, we estimate an average X-ray pulse duration of 12.6 ± 1.0 fs.

12.
Nanoscale ; 10(27): 13159-13164, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-29963676

ABSTRACT

Unraveling nanoscale spin structures has long been an important activity addressing various scientific interests, that are also readily adaptable to technological applications. This has invigorated the development of versatile nanoprobes suitable for imaging specimens under native conditions. Here we have demonstrated the resonant coherent diffraction of an artificial quasicrystal magnet with circularly polarized X-rays. The nanoscale magnetic structure was revealed from X-ray speckle patterns by comparing with micromagnetic simulations, as a step toward understanding the intricate relationship between the chemical and spin structures in an aperiodic quasicrystal lattice. Femtosecond X-ray pulses from free electron lasers are expected to immediately extend the current work to nanoscale structure investigations of ultrafast spin dynamics, surpassing the present spatio-temporal resolution.

13.
Rev Sci Instrum ; 88(5): 055101, 2017 May.
Article in English | MEDLINE | ID: mdl-28571425

ABSTRACT

We report on the first integrated apparatus for measuring surface and thermophysical properties and bulk structures of a highly supersaturated solution by combining electrostatic levitation with real-time laser/x-ray scattering. Even today, a proper characterization of supersaturated solutions far above their solubility limits is extremely challenging because heterogeneous nucleation sites such as container walls or impurities readily initiate crystallization before the measurements can be performed. In this work, we demonstrate simultaneous measurements of drying kinetics and surface tension of a potassium dihydrogen phosphate (KH2PO4) aqueous solution droplet and its bulk structural evolution beyond the metastable zone width limit. Our experimental finding shows that the noticeable changes of the surface properties are accompanied by polymerizations of hydrated monomer clusters. The novel electrostatic levitation apparatus presented here provides an effective means for studying a wide range of highly concentrated solutions and liquids in deep metastable states.

14.
Rev Sci Instrum ; 87(3): 035107, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27036819

ABSTRACT

We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods.

15.
Rev Sci Instrum ; 85(12): 125112, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25554331

ABSTRACT

The ability to synchronize a femtosecond laser to x-ray pulses is crucial for performing ultrafast time-resolved x-ray scattering experiments at synchrotrons. Conventionally, the task has been achieved by locking a harmonic frequency of the laser oscillator to the storage ring master radio-frequency (RF). However, when the frequency mismatch between the two sources cannot be compensated by small adjustments to the laser cavity length, synchronization to a harmonic frequency requires modifying the optical components of the laser system. We demonstrate a novel synchronization scheme, which is a flexible alternative for synchronizing these two sources operating at arbitrarily different frequencies. First, we find the greatest common divisor (GCD) of the two frequencies that is still within the limited tuning range of the laser cavity length. The GCD is generated by dividing down from the storage ring RF, and is separately multiplied up to provide a feedback signal for synchronizing the laser cavity. Unique to our scheme, the GCD also serves as a harmonic RF source for the laser amplifier such that only laser oscillator pulses at fixed integer multiples of the storage ring RF are selected for amplification and delivery to experiments. Our method is implemented at the Photon Test Facility beamline of Pohang Light Source where timing-jitter less than 4 ps (r.m.s.) is measured using a new shot-to-shot method.

SELECTION OF CITATIONS
SEARCH DETAIL