Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.097
Filter
Add more filters

Publication year range
1.
Nat Rev Mol Cell Biol ; 22(1): 54-70, 2021 01.
Article in English | MEDLINE | ID: mdl-33093673

ABSTRACT

Mitochondria contain about 1,000-1,500 proteins that fulfil multiple functions. Mitochondrial proteins originate from two genomes: mitochondrial and nuclear. Hence, proper mitochondrial function requires synchronization of gene expression in the nucleus and in mitochondria and necessitates efficient import of mitochondrial proteins into the organelle from the cytosol. Furthermore, the mitochondrial proteome displays high plasticity to allow the adaptation of mitochondrial function to cellular requirements. Maintenance of this complex and adaptable mitochondrial proteome is challenging, but is of crucial importance to cell function. Defects in mitochondrial proteostasis lead to proteotoxic insults and eventually cell death. Different quality control systems monitor the mitochondrial proteome. The cytosolic ubiquitin-proteasome system controls protein transport across the mitochondrial outer membrane and removes damaged or mislocalized proteins. Concomitantly, a number of mitochondrial chaperones and proteases govern protein folding and degrade damaged proteins inside mitochondria. The quality control factors also regulate processing and turnover of native proteins to control protein import, mitochondrial metabolism, signalling cascades, mitochondrial dynamics and lipid biogenesis, further ensuring proper function of mitochondria. Thus, mitochondrial protein quality control mechanisms are of pivotal importance to integrate mitochondria into the cellular environment.


Subject(s)
Lipogenesis , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Proteome/metabolism , Animals , Humans , Protein Transport , Proteome/analysis
2.
Nature ; 608(7921): 146-152, 2022 08.
Article in English | MEDLINE | ID: mdl-35831500

ABSTRACT

Social affiliation emerges from individual-level behavioural rules that are driven by conspecific signals1-5. Long-distance attraction and short-distance repulsion, for example, are rules that jointly set a preferred interanimal distance in swarms6-8. However, little is known about their perceptual mechanisms and executive neural circuits3. Here we trace the neuronal response to self-like biological motion9,10, a visual trigger for affiliation in developing zebrafish2,11. Unbiased activity mapping and targeted volumetric two-photon calcium imaging revealed 21 activity hotspots distributed throughout the brain as well as clustered biological-motion-tuned neurons in a multimodal, socially activated nucleus of the dorsal thalamus. Individual dorsal thalamus neurons encode local acceleration of visual stimuli mimicking typical fish kinetics but are insensitive to global or continuous motion. Electron microscopic reconstruction of dorsal thalamus neurons revealed synaptic input from the optic tectum and projections into hypothalamic areas with conserved social function12-14. Ablation of the optic tectum or dorsal thalamus selectively disrupted social attraction without affecting short-distance repulsion. This tectothalamic pathway thus serves visual recognition of conspecifics, and dissociates neuronal control of attraction from repulsion during social affiliation, revealing a circuit underpinning collective behaviour.


Subject(s)
Crowding , Neurons , Social Behavior , Superior Colliculi , Thalamus , Visual Pathways , Zebrafish , Animals , Brain Mapping , Calcium/analysis , Hypothalamus/cytology , Hypothalamus/physiology , Locomotion , Microscopy, Electron , Neurons/cytology , Neurons/physiology , Neurons/ultrastructure , Pattern Recognition, Visual , Photic Stimulation , Superior Colliculi/cytology , Superior Colliculi/physiology , Thalamus/cytology , Thalamus/physiology , Visual Pathways/cytology , Visual Pathways/physiology , Visual Pathways/ultrastructure , Zebrafish/physiology
3.
Mol Cell ; 77(1): 189-202.e6, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31668496

ABSTRACT

The proteolytic turnover of mitochondrial proteins is poorly understood. Here, we used a combination of dynamic isotope labeling and mass spectrometry to gain a global overview of mitochondrial protein turnover in yeast cells. Intriguingly, we found an exceptionally high turnover of the NADH dehydrogenase, Nde1. This homolog of the mammalian apoptosis inducing factor, AIF, forms two distinct topomers in mitochondria, one residing in the intermembrane space while the other spans the outer membrane and is exposed to the cytosol. The surface-exposed topomer triggers cell death in response to pro-apoptotic stimuli. The surface-exposed topomer is degraded by the cytosolic proteasome/Cdc48 system and the mitochondrial protease Yme1; however, it is strongly enriched in respiratory-deficient cells. Our data suggest that in addition to their role in electron transfer, mitochondrial NADH dehydrogenases such as Nde1 or AIF integrate signals from energy metabolism and cytosolic proteostasis to eliminate compromised cells from growing populations.


Subject(s)
Cell Death/physiology , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , NADH Dehydrogenase/metabolism , Proteostasis/physiology , ATP-Dependent Proteases/metabolism , Animals , Apoptosis/physiology , Apoptosis Inducing Factor/metabolism , Cytosol/metabolism , Electron Transport/physiology , Humans , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
4.
EMBO J ; 42(7): e112309, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36704946

ABSTRACT

Hundreds of nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. However, the early processes associated with mitochondrial protein targeting remain poorly understood. Here, we show that in Saccharomyces cerevisiae, the cytosol has the capacity to transiently store mitochondrial matrix-destined precursors in dedicated deposits that we termed MitoStores. Competitive inhibition of mitochondrial protein import via clogging of import sites greatly enhances the formation of MitoStores, but they also form during physiological cell growth on nonfermentable carbon sources. MitoStores are enriched for a specific subset of nucleus-encoded mitochondrial proteins, in particular those containing N-terminal mitochondrial targeting sequences. Our results suggest that MitoStore formation suppresses the toxic potential of aberrantly accumulating mitochondrial precursor proteins and is controlled by the heat shock proteins Hsp42 and Hsp104. Thus, the cytosolic protein quality control system plays an active role during the early stages of mitochondrial protein targeting through the coordinated and localized sequestration of mitochondrial precursor proteins.


Subject(s)
Molecular Chaperones , Saccharomyces cerevisiae Proteins , Cytosol/metabolism , Molecular Chaperones/metabolism , Mitochondria/metabolism , Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Transport , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
EMBO J ; 41(1): e109519, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34786732

ABSTRACT

Mitochondrial ribosomes are complex molecular machines indispensable for respiration. Their assembly involves the import of several dozens of mitochondrial ribosomal proteins (MRPs), encoded in the nuclear genome, into the mitochondrial matrix. Proteomic and structural data as well as computational predictions indicate that up to 25% of yeast MRPs do not have a conventional N-terminal mitochondrial targeting signal (MTS). We experimentally characterized a set of 15 yeast MRPs in vivo and found that five use internal MTSs. Further analysis of a conserved model MRP, Mrp17/bS6m, revealed the identity of the internal targeting signal. Similar to conventional MTS-containing proteins, the internal sequence mediates binding to TOM complexes. The entire sequence of Mrp17 contains positive charges mediating translocation. The fact that these sequence properties could not be reliably predicted by standard methods shows that mitochondrial protein targeting is more versatile than expected. We hypothesize that structural constraints imposed by ribosome assembly interfaces may have disfavored N-terminal presequences and driven the evolution of internal targeting signals in MRPs.


Subject(s)
Mitochondrial Proteins/metabolism , Mitochondrial Ribosomes/metabolism , Protein Sorting Signals , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs , Bacterial Proteins/chemistry , Mitochondria/metabolism , Models, Biological , Sequence Homology, Amino Acid
6.
EMBO Rep ; 25(4): 2071-2096, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565738

ABSTRACT

Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known. Here we show that mitochondrial contact sites play a crucial role in the ER-to-mitochondria transfer of precursor proteins. The ER mitochondria encounter structure (ERMES) and Tom70, together with Djp1 and Lam6, are part of two parallel and partially redundant ER-to-mitochondria delivery routes. When ER-to-mitochondria transfer is prevented by loss of these two contact sites, many precursors of mitochondrial inner membrane proteins are left stranded on the ER membrane, resulting in mitochondrial dysfunction. Our observations support an active role of the ER in mitochondrial protein biogenesis.


Subject(s)
Mitochondria , Saccharomyces cerevisiae Proteins , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Protein Transport , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 120(7): e2217673120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745788

ABSTRACT

Biallelic mutations in the glucocerebrosidase (GBA1) gene cause Gaucher disease, characterized by lysosomal accumulation of glucosylceramide and glucosylsphingosine in macrophages. Gaucher and other lysosomal diseases occur with high frequency in Ashkenazi Jews. It has been proposed that the underlying mutations confer a selective advantage, in particular conferring protection against tuberculosis. Here, using a zebrafish Gaucher disease model, we find that the mutation GBA1 N370S, predominant among Ashkenazi Jews, increases resistance to tuberculosis through the microbicidal activity of glucosylsphingosine in macrophage lysosomes. Consistent with lysosomal accumulation occurring only in homozygotes, heterozygotes remain susceptible to tuberculosis. Thus, our findings reveal a mechanistic basis for protection against tuberculosis by GBA1 N370S and provide biological plausibility for its selection if the relatively mild deleterious effects in homozygotes were offset by significant protection against tuberculosis, a rampant killer of the young in Europe through the Middle Ages into the 19th century.


Subject(s)
Gaucher Disease , Tuberculosis , Animals , Gaucher Disease/genetics , Zebrafish/genetics , Glucosylceramidase/genetics , Mutation , Tuberculosis/genetics , Tuberculosis/prevention & control
9.
EMBO J ; 40(16): e107913, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34191328

ABSTRACT

The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation-prone polyQ protein derived from human huntingtin. Expression of Q97-GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97-GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post-translational import of mitochondrial precursor proteins into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate-limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.


Subject(s)
Mitochondrial Membrane Transport Proteins/metabolism , Peptides/metabolism , Protein Aggregation, Pathological/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Line , Cytosol/metabolism , Humans , Mitochondria/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Saccharomyces cerevisiae
10.
J Cell Sci ; 136(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37417332

ABSTRACT

Protein translocases, such as the bacterial SecY complex, the Sec61 complex of the endoplasmic reticulum (ER) and the mitochondrial translocases, facilitate the transport of proteins across membranes. In addition, they catalyze the insertion of integral membrane proteins into the lipid bilayer. Several membrane insertases cooperate with these translocases, thereby promoting the topogenesis, folding and assembly of membrane proteins. Oxa1 and BamA family members serve as core components in the two major classes of membrane insertases. They facilitate the integration of proteins with α-helical transmembrane domains and of ß-barrel proteins into lipid bilayers, respectively. Members of the Oxa1 family were initially found in the internal membranes of bacteria, mitochondria and chloroplasts. Recent studies, however, also identified several Oxa1-type insertases in the ER, where they serve as catalytically active core subunits in the ER membrane protein complex (EMC), the guided entry of tail-anchored (GET) and the GET- and EMC-like (GEL) complex. The outer membrane of bacteria, mitochondria and chloroplasts contain ß-barrel proteins, which are inserted by members of the BamA family. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of these different types of membrane insertases and discuss their function.


Subject(s)
Escherichia coli Proteins , Membrane Transport Proteins , Membrane Transport Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/metabolism , Membranes/metabolism , Bacteria/metabolism , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism
11.
PLoS Biol ; 20(3): e3001380, 2022 03.
Article in English | MEDLINE | ID: mdl-35231030

ABSTRACT

Two multisubunit protein complexes for membrane protein insertion were recently identified in the endoplasmic reticulum (ER): the guided entry of tail anchor proteins (GET) complex and ER membrane complex (EMC). The structures of both of their hydrophobic core subunits, which are required for the insertion reaction, revealed an overall similarity to the YidC/Oxa1/Alb3 family members found in bacteria, mitochondria, and chloroplasts. This suggests that these membrane insertion machineries all share a common ancestry. To test whether these ER proteins can functionally replace Oxa1 in yeast mitochondria, we generated strains that express mitochondria-targeted Get2-Get1 and Emc6-Emc3 fusion proteins in Oxa1 deletion mutants. Interestingly, the Emc6-Emc3 fusion was able to complement an Δoxa1 mutant and restored its respiratory competence. The Emc6-Emc3 fusion promoted the insertion of the mitochondrially encoded protein Cox2, as well as of nuclear encoded inner membrane proteins, although was not able to facilitate the assembly of the Atp9 ring. Our observations indicate that protein insertion into the ER is functionally conserved to the insertion mechanism in bacteria and mitochondria and adheres to similar topological principles.


Subject(s)
Electron Transport Complex IV/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Cell Respiration/genetics , Electron Transport Complex IV/genetics , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mutation , Nuclear Proteins/genetics , Phylogeny , Protein Biosynthesis/genetics , Protein Transport/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/classification , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid
12.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-34983867

ABSTRACT

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.


Subject(s)
Climate Change , Trees/physiology , Ecosystem , Fertility/physiology , Geography , North America , Uncertainty
13.
Trends Biochem Sci ; 45(8): 650-667, 2020 08.
Article in English | MEDLINE | ID: mdl-32409196

ABSTRACT

While targeting of proteins synthesized in the cytosol to any organelle is complex, mitochondria present the most challenging of destinations. First, import of nuclear-encoded proteins needs to be balanced with production of mitochondrial-encoded ones. Moreover, as mitochondria are divided into distinct subdomains, their proteins harbor a number of different targeting signals and biophysical properties. While translocation into the mitochondrial membranes has been well studied, the cytosolic steps of protein import remain poorly understood. Here, we review current knowledge on mRNA and protein targeting to mitochondria, as well as recent advances in our understanding of the cellular programs that respond to accumulation of mitochondrial precursor proteins in the cytosol, thus linking defects in targeting-capacity to signaling.


Subject(s)
Cytosol/metabolism , Mitochondrial Proteins/biosynthesis , Heat-Shock Proteins/metabolism , Homeostasis , Mitochondrial Proteins/metabolism , Protein Biosynthesis , Protein Processing, Post-Translational , Protein Transport , Signal Recognition Particle/metabolism , Signal Transduction
14.
Traffic ; 23(5): 238-269, 2022 05.
Article in English | MEDLINE | ID: mdl-35343629

ABSTRACT

Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.


Subject(s)
Lysosomes , Metabolic Networks and Pathways , Lysosomes/metabolism , Signal Transduction
15.
Int J Cancer ; 154(2): 389-402, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37694289

ABSTRACT

A growing proportion of head and neck cancer (HNC), especially oropharyngeal cancer (OPC), is caused by human papillomavirus (HPV). There are several markers for HPV-driven HNC, one being HPV early antigen serology. We aimed to investigate the diagnostic accuracy of HPV serology and its performance across patient characteristics. Data from the VOYAGER consortium was used, which comprises five studies on HNC from North America and Europe. Diagnostic accuracy, that is, sensitivity, specificity, Cohen's kappa and correctly classified proportions of HPV16 E6 serology, was assessed for OPC and other HNC using p16INK4a immunohistochemistry (p16), HPV in situ hybridization (ISH) and HPV PCR as reference methods. Stratified analyses were performed for variables including age, sex, smoking and alcohol use, to test the robustness of diagnostic accuracy. A risk-factor analysis based on serology was conducted, comparing HPV-driven to non-HPV-driven OPC. Overall, HPV serology had a sensitivity of 86.8% (95% CI 85.1-88.3) and specificity of 91.2% (95% CI 88.6-93.4) for HPV-driven OPC using p16 as a reference method. In stratified analyses, diagnostic accuracy remained consistent across sex and different age groups. Sensitivity was lower for heavy smokers (77.7%), OPC without lymph node involvement (74.4%) and the ARCAGE study (66.7%), while specificity decreased for cases with <10 pack-years (72.1%). The risk-factor model included study, year of diagnosis, age, sex, BMI, alcohol use, pack-years, TNM-T and TNM-N stage. HPV serology is a robust biomarker for HPV-driven OPC, and its diagnostic accuracy is independent of age and sex. Future research is suggested on the influence of smoking on HPV antibody levels.


Subject(s)
Head and Neck Neoplasms , Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Human papillomavirus 16 , Human Papillomavirus Viruses , Head and Neck Neoplasms/diagnosis
16.
Ann Surg ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920042

ABSTRACT

OBJECTIVE: The aim was to analyze the learning curves of minimal invasive liver surgery(MILS) and propose a standardized reporting. SUMMARY BACKGROUND DATA: MILS offers benefits compared to open resections. For a safe introduction along the learning curve, formal training is recommended. However, definitions of learning curves and methods to assess it lack standardization. METHODS: A systematic review of PubMed, Web of Science, and CENTRAL databases identified studies on learning curves in MILS. The primary outcome was the number needed to overcome the learning curve. Secondary outcomes included endpoints defining learning curves, and characterization of different learning phases(competency, proficiency and mastery). RESULTS: 60 articles with 12'241 patients and 102 learning curve analyses were included. The laparoscopic and robotic approach was evaluated in 71 and 18 analyses and both approaches combined in 13 analyses. Sixty-one analyses (60%) based the learning curve on statistical calculations. The most often used parameters to define learning curves were operative time (n=64), blood loss (n=54), conversion (n=42) and postoperative complications (n=38). Overall competency, proficiency and mastery were reached after 34 (IQR 19-56), 50 (IQR 24-74), 58 (IQR 24-100) procedures respectively. Intraoperative parameters improved earlier (operative time: competency to proficiency to mastery: -13%, 2%; blood loss: competency to proficiency to mastery: -33%, 0%; conversion rate (competency to proficiency to mastery; -21%, -29%), whereas postoperative complications improved later (competency to proficiency to mastery: -25%, -41%). CONCLUSIONS: This review summarizes the highest evidence on learning curves in MILS taking into account different definitions and confounding factors. A standardized three-phase reporting of learning phases (competency, proficiency, mastery) is proposed and should be followed.

17.
J Pediatr ; 266: 113838, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37995930

ABSTRACT

OBJECTIVE: To examine the relationship between perioperative brain injury and neurodevelopment during early childhood in patients with severe congenital heart disease (CHD). STUDY DESIGN: One hundred and seventy children with CHD and born at term who required cardiopulmonary bypass surgery in the first 6 weeks after birth were recruited from 3 European centers and underwent preoperative and postoperative brain MRIs. Uniform description of imaging findings was performed and an overall brain injury score was created, based on the sum of the worst preoperative or postoperative brain injury subscores. Motor and cognitive outcomes were assessed with the Bayley Scales of Infant and Toddler Development Third Edition at 12 to 30 months of age. The relationship between brain injury score and clinical outcome was assessed using multiple linear regression analysis, adjusting for CHD severity, length of hospital stay (LOS), socioeconomic status (SES), and age at follow-up. RESULTS: Neither the overall brain injury score nor any of the brain injury subscores correlated with motor or cognitive outcome. The number of preoperative white matter lesions was significantly associated with gross motor outcome after correction for multiple testing (P = .013, ß = -0.50). SES was independently associated with cognitive outcome (P < .001, ß = 0.26), and LOS with motor outcome (P < .001, ß = -0.35). CONCLUSION: Preoperative white matter lesions appear to be the most predictive MRI marker for adverse early childhood gross motor outcome in this large European cohort of infants with severe CHD. LOS as a marker of disease severity, and SES influence outcome and future intervention trials need to address these risk factors.


Subject(s)
Brain Injuries , Heart Defects, Congenital , Infant , Humans , Child, Preschool , Brain/pathology , Brain Injuries/etiology , Brain Injuries/pathology , Heart Defects, Congenital/surgery , Heart Defects, Congenital/complications , Magnetic Resonance Imaging , Risk Factors
18.
NMR Biomed ; : e5147, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561247

ABSTRACT

Partial Fourier encoding is popular in single-shot (ss) diffusion-weighted (DW) echo planar imaging (EPI) because it enables a shorter echo time (TE) and, hence, improves the signal-to-noise-ratio. Motion during diffusion encoding causes k-space shifting and dispersion, which compromises the quality of the homodyne reconstruction. This work provides a comprehensive understanding of the artifacts in homodyne reconstruction of partial Fourier ss-DW-EPI data in the presence of motion-induced phase and proposes the motion-induced phase-corrected homodyne (mpc-hdyne) reconstruction method to ameliorate these artifacts. Simulations with different types of motion-induced phase were performed to provide an understanding of the potential artifacts that occur in the homodyne reconstruction of partial Fourier ss-DW-EPI data. To correct for the artifacts, the mpc-hdyne reconstruction is proposed. The algorithm recenters k-space, updates the partial Fourier factor according to detected global k-space shifts, and removes low-resolution nonlinear phase before the conventional homodyne reconstruction. The mpc-hdyne reconstruction is tested on both simulation and in vivo data. Motion-induced phase can cause signal overestimation, worm artifacts, and signal loss in partial Fourier ss-DW-EPI data with the conventional homodyne reconstruction. Simulation and in vivo data showed that the proposed mpc-hdyne reconstruction ameliorated artifacts, yielding higher quality DW images compared with conventional homodyne reconstruction. Based on the understanding of the artifacts in homodyne reconstruction of partial Fourier ss-DW-EPI data, the mpc-hdyne reconstruction was proposed and showed superior performance compared with the conventional homodyne reconstruction on both simulation and in vivo data.

19.
Haematologica ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572568

ABSTRACT

Belantamab mafodotin (belantamab) is a first-in-class anti-BCMA antibody-drug conjugate approved for the treatment of triple-class refractory multiple myeloma. It provides a unique therapeutic option for patients ineligible for CAR-T and bispecific antibody therapy, and/or patients progressing on anti-CD38 treatment where CAR-T and bispecifics might be kept in reserve. Wider use of the drug can be challenged by its distinct ocular side effect profile, including corneal microcysts and keratopathy. While dose reduction has been the most effective way to reduce these toxicities, the underlying mechanism of this BCMA off-target effect remains to be characterized. In this study, we provide the first evidence for soluble BCMA (sBCMA) in lacrimal fluid and report on its correlation with tumor burden in myeloma patients. We confirm that corneal cells do not express BCMA, and show that sBCMA-belantamab complexes may rather be internalized by corneal epithelial cells through receptor-ligand independent pinocytosis. Using an hTcEpi corneal cell-line model, we show that the pinocytosis inhibitor EIPA significantly reduces belantamab-specific cell killing. As a proof of concept, we provide detailed patient profiles demonstrating that, after belantamab-induced cell killing, sBCMA is released into circulation, followed by a delayed increase of sBCMA in the tear fluid and subsequent onset of keratopathy. Based on the proposed mechanism, pinocytosis-induced keratopathy can be prevented by lowering the entry of sBCMA into the lacrimal fluid. Future therapeutic concepts may therefore consist of belantamab-free debulking therapy prior to belantamab consolidation and/or concomitant use of gamma-secretase inhibition as currently evaluated for belantamab and nirogacestat in ongoing studies.

20.
Phys Rev Lett ; 132(21): 211601, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856275

ABSTRACT

The amplituhedron provides, via geometric means, the all-loop integrand of scattering amplitudes in maximally supersymmetric Yang-Mills theory. Unfortunately, dimensional regularization, used conventionally for integration, breaks the beautiful geometric picture. This motivates us to propose a "deformed" amplituhedron. Focusing on the four-particle amplitude, we introduce two deformation parameters, which can be interpreted as particle masses. We provide evidence that the mass pattern corresponds to a specific choice of vacuum expectation values on the Coulomb branch. The deformed amplitude is infrared finite, making the answer well defined in four dimensions. Leveraging four-dimensional integration techniques based on differential equations, we compute the amplitude up to two loops. In the limit where the deformation parameters are taken to zero, we recover the known Bern-Dixon-Smirnov amplitude. In the limit where only one deformation parameter is taken to zero, we find a connection to the angle-dependent cusp anomalous dimension.

SELECTION OF CITATIONS
SEARCH DETAIL