Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Publication year range
1.
Cell ; 157(3): 689-701, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24766812

ABSTRACT

Though much is known about the cellular and molecular components of the circadian clock, output pathways that couple clock cells to overt behaviors have not been identified. We conducted a screen for circadian-relevant neurons in the Drosophila brain and report here that cells of the pars intercerebralis (PI), a functional homolog of the mammalian hypothalamus, comprise an important component of the circadian output pathway for rest:activity rhythms. GFP reconstitution across synaptic partners (GRASP) analysis demonstrates that PI cells are connected to the clock through a polysynaptic circuit extending from pacemaker cells to PI neurons. Molecular profiling of relevant PI cells identified the corticotropin-releasing factor (CRF) homolog, DH44, as a circadian output molecule that is specifically expressed by PI neurons and is required for normal rest:activity rhythms. Notably, selective activation or ablation of just six DH44+ PI cells causes arrhythmicity. These findings delineate a circuit through which clock cells can modulate locomotor rhythms.


Subject(s)
Circadian Clocks , Drosophila/physiology , Neurons/physiology , Animals , Animals, Genetically Modified , Brain/cytology , Brain/physiology , Circadian Rhythm , Drosophila/cytology , Neurons/cytology , Single-Cell Analysis , Transcriptome
2.
Ann Neurol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924596

ABSTRACT

OBJECTIVE: Alzheimer's disease (AD) is believed to be more common in African Americans (AA), but biomarker studies in AA populations are limited. This report represents the largest study to date examining cerebrospinal fluid AD biomarkers in AA individuals. METHODS: We analyzed 3,006 cerebrospinal fluid samples from controls, AD cases, and non-AD cases, including 495 (16.5%) self-identified black/AA and 2,456 (81.7%) white/European individuals using cutoffs derived from the Alzheimer's Disease Neuroimaging Initiative, and using a data-driven multivariate Gaussian mixture of regressions. RESULTS: Distinct effects of race were found in different groups. Total Tauand phospho181-Tau were lower among AA individuals in all groups (p < 0.0001), and Aß42 was markedly lower in AA controls compared with white controls (p < 0.0001). Gaussian mixture of regressions modeling of cerebrospinal fluid distributions incorporating adjustments for covariates revealed coefficient estimates for AA race comparable with 2-decade change in age. Using Alzheimer's Disease Neuroimaging Initiative cutoffs, fewer AA controls were classified as biomarker-positive asymptomatic AD (8.0% vs 13.4%). After adjusting for covariates, our Gaussian mixture of regressions model reduced this difference, but continued to predict lower prevalence of asymptomatic AD among AA controls (9.3% vs 13.5%). INTERPRETATION: Although the risk of dementia is higher, data-driven modeling indicates lower frequency of asymptomatic AD in AA controls, suggesting that dementia among AA populations may not be driven by higher rates of AD. ANN NEUROL 2024.

3.
Alzheimers Dement ; 20(6): 4043-4065, 2024 06.
Article in English | MEDLINE | ID: mdl-38713744

ABSTRACT

INTRODUCTION: Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS: We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS: Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION: These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Biomarkers , Proteomics , Humans , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/blood , Alzheimer Disease/genetics , Male , Aged , Female , Brain/metabolism , Tauopathies/cerebrospinal fluid , Tauopathies/blood , Supranuclear Palsy, Progressive/cerebrospinal fluid , Supranuclear Palsy, Progressive/blood , Cerebral Amyloid Angiopathy/cerebrospinal fluid , Cerebral Amyloid Angiopathy/genetics , Middle Aged , Aged, 80 and over , tau Proteins/cerebrospinal fluid
4.
Neurobiol Dis ; 186: 106286, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37689213

ABSTRACT

Cognitive impairment in the elderly features complex molecular pathophysiology extending beyond the hallmark pathologies of traditional disease classification. Molecular subtyping using large-scale -omic strategies can help resolve this biological heterogeneity. Using quantitative mass spectrometry, we measured ∼8000 proteins across >600 dorsolateral prefrontal cortex tissues with clinical diagnoses of no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's disease (AD) dementia. Unbiased classification of MCI and AD cases based on individual proteomic profiles resolved three classes with expression differences across numerous cell types and biological ontologies. Two classes displayed molecular signatures atypical of AD neurodegeneration, such as elevated synaptic and decreased inflammatory markers. In one class, these atypical proteomic features were associated with clinical and pathological hallmarks of cognitive resilience. We were able to replicate these classes and their clinicopathological phenotypes across two additional tissue cohorts. These results promise to better define the molecular heterogeneity of cognitive impairment and meaningfully impact its diagnostic and therapeutic precision.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Humans , Proteome , Proteomics , Brain
5.
Biol Cybern ; 116(5-6): 611-633, 2022 12.
Article in English | MEDLINE | ID: mdl-36244004

ABSTRACT

Negative correlations in the sequential evolution of interspike intervals (ISIs) are a signature of memory in neuronal spike-trains. They provide coding benefits including firing-rate stabilization, improved detectability of weak sensory signals, and enhanced transmission of information by improving signal-to-noise ratio. Primary electrosensory afferent spike-trains in weakly electric fish fall into two categories based on the pattern of ISI correlations: non-bursting units have negative correlations which remain negative but decay to zero with increasing lags (Type I ISI correlations), and bursting units have oscillatory (alternating sign) correlation which damp to zero with increasing lags (Type II ISI correlations). Here, we predict and match observed ISI correlations in these afferents using a stochastic dynamic threshold model. We determine the ISI correlation function as a function of an arbitrary discrete noise correlation function [Formula: see text], where k is a multiple of the mean ISI. The function permits forward and inverse calculations of the correlation function. Both types of correlation functions can be generated by adding colored noise to the spike threshold with Type I correlations generated with slow noise and Type II correlations generated with fast noise. A first-order autoregressive (AR) process with a single parameter is sufficient to predict and accurately match both types of afferent ISI correlation functions, with the type being determined by the sign of the AR parameter. The predicted and experimentally observed correlations are in geometric progression. The theory predicts that the limiting sum of ISI correlations is [Formula: see text] yielding a perfect DC-block in the power spectrum of the spike train. Observed ISI correlations from afferents have a limiting sum that is slightly larger at [Formula: see text] ([Formula: see text]). We conclude that the underlying process for generating ISIs may be a simple combination of low-order AR and moving average processes and discuss the results from the perspective of optimal coding.


Subject(s)
Electric Fish , Animals , Action Potentials/physiology , Electric Fish/physiology , Neurons/physiology , Noise , Models, Neurological
6.
Int J Mol Sci ; 23(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35457083

ABSTRACT

In insects, adipokinetic hormone is the primary hormone responsible for the mobilization of stored energy. While a growing body of evidence has solidified the role of adipokinetic hormone (AKH) in modulating the physiological and behavioral responses to metabolic stress, little is known about the upstream endocrine circuit that directly regulates AKH release. We evaluated the AKH-producing cell (APC) transcriptome to identify potential regulatory elements controlling APC activity and found that a number of receptors showed consistent expression levels, including all known dopamine receptors and the pigment dispersing factor receptor (PDFR). We tested the consequences of targeted genetic knockdown and found that APC limited expression of RNAi elements corresponding to each dopamine receptor and caused a significant reduction in survival under starvation. In contrast, PDFR knockdown significantly extended lifespan under starvation, whereas expression of a tethered PDF in APCs resulted in significantly shorter lifespans. These manipulations caused various changes in locomotor activity under starvation. We used live-cell imaging to evaluate the acute effects of the ligands for these receptors on APC activation. Dopamine application led to a transient increase in intracellular calcium in a trehalose-dependent manner. Furthermore, coapplication of dopamine and ecdysone led to a complete loss of this response, suggesting that these two hormones act antagonistically. We also found that PDF application led to an increase in cAMP in APCs and that this response was dependent on expression of the PDFR in APCs. Together, these results suggest a complex circuit in which multiple hormones act on APCs to modulate metabolic state.


Subject(s)
Insect Hormones , Starvation , Animals , Dopamine/metabolism , Drosophila melanogaster/genetics , Insect Hormones/genetics , Insect Hormones/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Signal Transduction , Starvation/metabolism
7.
Int J Mol Sci ; 22(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34299134

ABSTRACT

All organisms confront the challenges of maintaining metabolic homeostasis in light of both variabilities in nutrient supplies and energetic costs of different physiologies and behaviors. While all cells are nutrient sensitive, only relative few cells within Metazoans are nutrient sensing cells. Nutrient sensing cells organize systemic behavioral and physiological responses to changing metabolic states. One group of cells present in the arthropods, is the adipokinetic hormone producing cells (APCs). APCs possess intrinsic nutrient sensors and receive contextual information regarding metabolic state through other endocrine connections. APCs express receptors for different hormones which modulate APC physiology and the secretion of the adipokinetic hormone (AKH). APCs are functionally similar to alpha cells in the mammalian pancreas and display a similar physiological organization. AKH release results in both hypertrehalosemia and hyperlipidemia through high affinity binding to the AKH receptor (AKHR). Another hallmark of AKH signaling is heightened locomotor activity, which accompanies starvation and is thought to enhance foraging. In this review, we discuss mechanisms of nutrient sensing and modulation of AKH release. Additionally, we compare the organization of AKH/AKHR signaling in different taxa. Lastly, we consider the signals that APCs integrate as well as recent experimental results that have expanded the functional repertoire of AKH signaling, further establishing this as both a metabolic and stress hormone.


Subject(s)
Homeostasis , Insect Hormones/metabolism , Nutrients/analysis , Nutrients/metabolism , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Stress, Physiological , Animals , Humans , Pyrrolidonecarboxylic Acid/metabolism , Signal Transduction
8.
Biochem Biophys Res Commun ; 523(2): 322-327, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31864711

ABSTRACT

While many instances of GPCR dimerization have been reported for vertebrate receptors, invertebrate GPCR dimerization remains poorly investigated, with few invertebrate GPCRs having been shown to assemble as dimers. To date, no Drosophila GPCRs have been shown to assemble as dimers. To explore the evolutionary conservation of GPCR dimerization, we employed an acceptor-photobleaching FRET methodology to evaluate whether multiple subclasses of Drosophila GPCRs assembled as homodimers when heterologously expressed in HEK-293 T cells. We C-terminally tagged multiple Drosophila neuropeptide GPCRs that exhibited structural homology with a vertebrate GPCR family member previously shown to assemble as a dimer with CFP and YFP fluorophores and visualized these receptors through confocal microscopy. FRET responses were determined based on the increase in CFP emission intensity following YFP photobleaching for each receptor pair tested. A significant FRET response was observed for each receptor expressed as a homodimer pair, while non-significant FRET responses were displayed by both cytosolic CFP and YFP expressed alone, and a heterodimeric pair of receptors from unrelated families. These findings suggest that receptors exhibiting positive FRET responses assemble as homodimers at the plasma membrane and are the first to suggest that Drosophila GPCRs assemble as homodimeric complexes. We propose that GPCR dimerization arose early in metazoan evolution and likely plays an important and underappreciated role in the cellular signaling of all animals.


Subject(s)
Drosophila Proteins/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, Neuropeptide/chemistry , Animals , Cell Membrane/metabolism , Dimerization , Drosophila Proteins/classification , Drosophila Proteins/genetics , Evolution, Molecular , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Neuropeptides/metabolism , Photobleaching , Receptors, G-Protein-Coupled/classification , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/classification , Receptors, Neuropeptide/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
9.
Clin Proteomics ; 17: 19, 2020.
Article in English | MEDLINE | ID: mdl-32514259

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is the most common cause of dementia, characterized by progressive cognitive decline. Protein biomarkers of AD brain pathology, including ß-amyloid and Tau, are reflected in cerebrospinal fluid (CSF), yet the identification of additional biomarkers linked to other brain pathophysiologies remains elusive. We recently reported a multiplex tandem-mass tag (TMT) CSF proteomic analysis of nearly 3000 proteins, following depletion of highly abundant proteins and off-line fractionation, across control and AD cases. Of these, over 500 proteins were significantly increased or decreased in AD, including markers reflecting diverse biological functions in brain. Here, we use a targeted mass spectrometry (MS) approach, termed parallel reaction monitoring (PRM), to quantify select CSF biomarkers without pre-depletion or fractionation to assess the reproducibility of our findings and the specificity of changes for AD versus other causes of cognitive impairment. METHOD: We nominated 41 proteins (94 peptides) from the TMT CSF discovery dataset, representing a variety of brain cell-types and biological functions, for label-free PRM analysis in a replication cohort of 88 individuals that included 20 normal controls, 37 clinically diagnosed AD cases and 31 cases with non-AD cognitive impairment. To control for technical variables, isotopically labeled synthetic heavy peptide standards were added into each of the 88 CSF tryptic digests. Furthermore, a peptide pool, representing an equivalent amount of peptide from all samples, was analyzed (n = 10) across each batch. Together, this approach enabled us to assess both the intra- and inter-sample differences in peptide signal response and retention time. RESULTS: Despite differences in sample preparation, quantitative MS approaches and patient samples, 25 proteins, including Tau, had a consistent and significant change in AD in both the discovery and replication cohorts. Validated CSF markers with low coefficient of variation included the protein products for neuronal/synaptic (GDA, GAP43, SYN1, BASP1, YWHAB, YWHAZ, UCHL1, STMN1 and MAP1B), glial/inflammation (SMOC1, ITGAM, CHI3L1, SPP1, and CHIT1) and metabolic (PKM, ALDOA and FABP3) related genes. Logistical regression analyses revealed several proteins with high sensitivity and specificity for classifying AD cases from controls and other non-AD dementias. SMOC1, YWHAZ, ALDOA and MAP1B emerged as biomarker candidates that could best discriminate between individuals with AD and non-AD cognitive impairment as well as Tau/ß-amyloid ratio. Notably, SMOC1 levels in postmortem brain are highly correlated with AD pathology even in the preclinical stage of disease, indicating that CSF SMOC1 levels reflect underlying brain pathology specific for AD. CONCLUSION: Collectively these findings highlight the utility of targeted MS approaches to quantify biomarkers associated with AD that could be used for monitoring disease progression, stratifying patients for clinical trials and measuring therapeutic response.

10.
J Proteome Res ; 18(6): 2422-2432, 2019 06 07.
Article in English | MEDLINE | ID: mdl-30983353

ABSTRACT

Here, we report a method for the generation of complementary tryptic (CompTryp) isotope-labeled peptide standards for the relative and absolute quantification of proteins by mass spectrometry (MS). These standards can be digested in parallel with either trypsin (Tryp-C) or trypsin-N (Tryp-N), to generate peptides that significantly overlap in primary sequence having C- and N-terminal arginine and lysine residues, respectively. As a proof of concept, an isotope-labeled CompTryp standard was synthesized for Tau, a well-established biomarker in Alzheimer's disease (AD), which included both N- and C-terminal heavy isotope-labeled (15N and 13C) arginine residues and flanking amino acid sequences to monitor proteolytic digestion. Despite having the exact same mass, the N- and C-terminal heavy Tau peptides are distinguishable by retention time and MS/MS fragmentation profiles. The isotope-labeled Tau CompTryp standard was added to human cerebrospinal fluid (CSF) followed by parallel digestion with Tryp-N and Tryp-C. The native and isotope-labeled peptide pairs were quantified by parallel reaction monitoring (PRM) in a single assay. Notably, both tryptic peptides were effective at quantifying Tau in human CSF, and both showed a significant difference in CSF Tau levels between AD and controls. Treating these CompTryp Tau peptide measurements as independent replicates also improved the coefficient of variation and correlation with Tau immunoassays. More broadly, we propose that CompTryp standards can be generated for any protein of interest, providing an efficient method to improve the robustness and reproducibility for MS analysis of clinical and research samples.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Peptide Fragments/isolation & purification , tau Proteins/cerebrospinal fluid , Aged , Alzheimer Disease/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/genetics , Chromatography, Liquid/methods , Female , Humans , Immunoassay/methods , Isotope Labeling , Male , Peptide Fragments/chemistry , Peptide Fragments/genetics , Tandem Mass Spectrometry/methods , Trypsin/pharmacology , tau Proteins/chemistry , tau Proteins/genetics
11.
Biochem Biophys Res Commun ; 503(3): 1919-1926, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30064912

ABSTRACT

G protein-coupled receptors are the largest superfamily of cell surface receptors in the Metazoa and play critical roles in transducing extracellular signals into intracellular responses. This action is mediated through conformational changes in the receptor following ligand binding. A number of conserved motifs have critical roles in GPCR function, and here we focus on a highly conserved motif (WxFG) in extracellular loop one (EL1). A phylogenetic analysis documents the presence of the WxFG motif in ∼90% of Class A GPCRs and the motif is represented in 17 of the 19 Class A GPCR subfamilies. Using site-directed mutagenesis, we mutagenized the conserved tryptophan residue in eight receptors which are members of disparate class A GPCR subfamilies from different taxa. The modification of the Drosophila leucokinin receptor shows that substitution of any non-aromatic amino acid for the tryptophan leads to a loss of receptor function. Additionally, leucine substitutions at this position caused similar signaling defects in the follicle-stimulating hormone receptor (FSHR), Galanin receptor (GALR1), AKH receptor (AKHR), corazonin receptor (CRZR), and muscarinic acetylcholine receptor (mACHR1). Visualization of modified receptors through the incorporation of a fluorescent tag revealed a severe reduction in plasma membrane expression, indicating aberrant trafficking of these modified receptors. Taken together, these results suggest a novel role for the WxFG motif in GPCR trafficking and receptor function.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Animals , Caenorhabditis elegans , Chickens , Ciona intestinalis , Cloning, Molecular , Drosophila melanogaster , Humans , Models, Molecular , Mutagenesis, Site-Directed , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics , Xenopus laevis , Zebrafish
12.
Development ; 142(24): 4279-87, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26395475

ABSTRACT

Insect growth is punctuated by molts, during which the animal produces a new exoskeleton. The molt culminates in ecdysis, an ordered sequence of behaviors that causes the old cuticle to be shed. This sequence is activated by Ecdysis triggering hormone (ETH), which acts on the CNS to activate neurons that produce neuropeptides implicated in ecdysis, including Eclosion hormone (EH), Crustacean cardioactive peptide (CCAP) and Bursicon. Despite more than 40 years of research on ecdysis, our understanding of the precise roles of these neurohormones remains rudimentary. Of particular interest is EH; although it is known to upregulate ETH release, other roles for EH have remained elusive. We isolated an Eh null mutant in Drosophila and used it to investigate the role of EH in larval ecdysis. We found that null mutant animals invariably died at around the time of ecdysis, revealing an essential role in its control. Further analyses showed that these animals failed to express the preparatory behavior of pre-ecdysis while directly expressing the motor program of ecdysis. Although ETH release could not be detected, the lack of pre-ecdysis could not be rescued by injections of ETH, suggesting that EH is required within the CNS for ETH to trigger the normal ecdysial sequence. Using a genetically encoded calcium probe, we showed that EH configured the response of the CNS to ETH. These findings show that EH plays an essential role in the Drosophila CNS in the control of ecdysis, in addition to its known role in the periphery of triggering ETH release.


Subject(s)
Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Insect Hormones/genetics , Molting , Alleles , Animals , Behavior, Animal , Hemizygote , Injections , Insect Hormones/metabolism , Larva/growth & development , Mutation/genetics , Neurons/metabolism , Neuropeptides/metabolism
13.
J Comput Neurosci ; 40(2): 193-206, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26922680

ABSTRACT

Sensory neurons code information about stimuli in their sequence of action potentials (spikes). Intuitively, the spikes should represent stimuli with high fidelity. However, generating and propagating spikes is a metabolically expensive process. It is therefore likely that neural codes have been selected to balance energy expenditure against encoding error. Our recently proposed optimal, energy-constrained neural coder (Jones et al. Frontiers in Computational Neuroscience, 9, 61 2015) postulates that neurons time spikes to minimize the trade-off between stimulus reconstruction error and expended energy by adjusting the spike threshold using a simple dynamic threshold. Here, we show that this proposed coding scheme is related to existing coding schemes, such as rate and temporal codes. We derive an instantaneous rate coder and show that the spike-rate depends on the signal and its derivative. In the limit of high spike rates the spike train maximizes fidelity given an energy constraint (average spike-rate), and the predicted interspike intervals are identical to those generated by our existing optimal coding neuron. The instantaneous rate coder is shown to closely match the spike-rates recorded from P-type primary afferents in weakly electric fish. In particular, the coder is a predictor of the peristimulus time histogram (PSTH). When tested against in vitro cortical pyramidal neuron recordings, the instantaneous spike-rate approximates DC step inputs, matching both the average spike-rate and the time-to-first-spike (a simple temporal code). Overall, the instantaneous rate coder relates optimal, energy-constrained encoding to the concepts of rate-coding and temporal-coding, suggesting a possible unifying principle of neural encoding of sensory signals.


Subject(s)
Action Potentials/physiology , Energy Metabolism/physiology , Models, Neurological , Sensory Receptor Cells/physiology , Animals , Electric Stimulation , Humans , Time Factors
14.
J Pept Sci ; 22(5): 368-73, 2016 May.
Article in English | MEDLINE | ID: mdl-27114096

ABSTRACT

Current evidence suggests that oligomers of the amyloid-ß (Aß) peptide are involved in the cellular toxicity of Alzheimer's disease, yet their biophysical characterization remains difficult because of lack of experimental control over the aggregation process under relevant physiologic conditions. Here, we show that modification of the Aß peptide backbone at Gly29 allows for the formation of oligomers but inhibits fibril formation at physiologic temperature and pH. Our results suggest that the putative bend region in Aß is important for higher-order aggregate formation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Amyloid/chemistry , Peptide Fragments/chemical synthesis , Amino Acid Sequence , Glycine/metabolism , Hydrogen-Ion Concentration , Models, Molecular , Mutation , Peptide Fragments/chemistry , Temperature
15.
Res Sq ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38464223

ABSTRACT

Introduction: Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to ß-amyloid (Aß) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. Methods: We employed heparin affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to capture and enrich HBPs in plasma obtained from AD (n=62) and control (n=47) samples. These profiles were then correlated to a consensus AD brain proteome, as well as with Aß, tau and phosphorylated tau (pTau) CSF biomarkers from the same individuals. We then leveraged published human postmortem brain proteome datasets to assess the overlap with the heparin-enriched plasma proteome. Results: Heparin-enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundance proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude were detectable. Utilizing a consensus AD brain protein co-expression network, we observed that specific plasma HBPs exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes highlighting the complex interplay between the two compartments. Elevated HBPs in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate within Aß deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and APOE. Additionally, heparin enriched plasma proteins demonstrated significant correlations with conventional AD CSF biomarkers, including Aß, total tau, pTau, and plasma pTau from the same individuals. Conclusion: These findings support the utility of a heparin-affinity approach for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.

16.
medRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260316

ABSTRACT

Dysfunction of the neurovascular unit stands as a significant pathological hallmark of Alzheimer's disease (AD) and age-related neurodegenerative diseases. Nevertheless, detecting vascular changes in the brain within bulk tissues has proven challenging, limiting our ability to characterize proteomic alterations from less abundant cell types. To address this challenge, we conducted quantitative proteomic analyses on both bulk brain tissues and cerebrovascular-enriched fractions from the same individuals, encompassing cognitively unimpaired control, progressive supranuclear palsy (PSP), and AD cases. Protein co-expression network analysis identified modules unique to the cerebrovascular fractions, specifically enriched with pericytes, endothelial cells, and smooth muscle cells. Many of these modules also exhibited significant correlations with amyloid plaques, cerebral amyloid angiopathy (CAA), and/or tau pathology in the brain. Notably, the protein products within AD genetic risk loci were found concentrated within modules unique to the vascular fractions, consistent with a role of cerebrovascular deficits in the etiology of AD. To prioritize peripheral AD biomarkers associated with vascular dysfunction, we assessed the overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with a vascular-enriched network modules in the brain. This analysis highlighted matrisome proteins, SMOC1 and SMOC2, as being increased in CSF, plasma, and brain. Immunohistochemical analysis revealed SMOC1 deposition in both parenchymal plaques and CAA in the AD brain, whereas SMOC2 was predominantly localized to CAA. Collectively, these findings significantly enhance our understanding of the involvement of cerebrovascular abnormalities in AD, shedding light on potential biomarkers and molecular pathways associated with CAA and vascular dysfunction in neurodegenerative diseases.

17.
Sci Transl Med ; 16(753): eadn3504, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924431

ABSTRACT

Alzheimer's disease (AD) is currently defined by the aggregation of amyloid-ß (Aß) and tau proteins in the brain. Although biofluid biomarkers are available to measure Aß and tau pathology, few markers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here, we characterized the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals using two different proteomic technologies-tandem mass tag mass spectrometry and SomaScan. Integration of both data types allowed for generation of a robust protein coexpression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen-associated protein kinase signaling, neddylation, and mitochondrial biology and overlapped with a previously described lipoprotein module in serum. Alterations of all three modules in blood were associated with dementia more than 20 years before diagnosis. Analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Clustering of individuals based on their CSF proteomic profiles revealed heterogeneity of pathological changes not fully reflected by Aß and tau.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Atomoxetine Hydrochloride , Proteomics , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Proteomics/methods , Apolipoprotein E4/genetics , Atomoxetine Hydrochloride/therapeutic use , Atomoxetine Hydrochloride/pharmacology , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Male , Aged , Female , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism
18.
Res Sq ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260284

ABSTRACT

The current demand for early intervention, prevention, and treatment of late onset Alzheimer's disease (LOAD) warrants deeper understanding of the underlying molecular processes which could contribute to biomarker and drug target discovery. Utilizing high-throughput proteomic measurements in serum from a prospective population-based cohort of older adults (n = 5,294), we identified 303 unique proteins associated with incident LOAD (median follow-up 12.8 years). Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status. These proteins were implicated in neuronal processes and overlapped with protein signatures of LOAD in brain and cerebrospinal fluid. We found 17 proteins which LOAD-association was strongly dependent on APOE-ε4 carrier status. Most of them showed consistent associations with LOAD in cerebrospinal fluid and a third had brain-specific gene expression. Remarkably, four proteins in this group (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated as a consequence of LOAD as determined in a bi-directional Mendelian randomization analysis, reflecting a potential response to the disease onset. Accordingly, the direct association of these proteins to LOAD was reversed upon APOE-ε4 genotype adjustment, a finding which we replicate in an external cohort (n = 719). Our findings provide an insight into the dysregulated pathways that may lead to the development and early detection of LOAD, including those both independent and dependent on APOE-ε4. Importantly, many of the LOAD-associated proteins we find in the circulation have been found to be expressed - and have a direct link with AD - in brain tissue. Thus, the proteins identified here, and their upstream modulating pathways, provide a new source of circulating biomarker and therapeutic target candidates for LOAD.

19.
medRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260583

ABSTRACT

Background: To date, there is no high throughput proteomic study in the context of Autosomal Dominant Alzheimer's disease (ADAD). Here, we aimed to characterize early CSF proteome changes in ADAD and leverage them as potential biomarkers for disease monitoring and therapeutic strategies. Methods: We utilized Somascan® 7K assay to quantify protein levels in the CSF from 291 mutation carriers (MCs) and 185 non-carriers (NCs). We employed a multi-layer regression model to identify proteins with different pseudo-trajectories between MCs and NCs. We replicated the results using publicly available ADAD datasets as well as proteomic data from sporadic Alzheimer's disease (sAD). To biologically contextualize the results, we performed network and pathway enrichment analyses. Machine learning was applied to create and validate predictive models. Findings: We identified 125 proteins with significantly different pseudo-trajectories between MCs and NCs. Twelve proteins showed changes even before the traditional AD biomarkers (Aß42, tau, ptau). These 125 proteins belong to three different modules that are associated with age at onset: 1) early stage module associated with stress response, glutamate metabolism, and mitochondria damage; 2) the middle stage module, enriched in neuronal death and apoptosis; and 3) the presymptomatic stage module was characterized by changes in microglia, and cell-to-cell communication processes, indicating an attempt of rebuilding and establishing new connections to maintain functionality. Machine learning identified a subset of nine proteins that can differentiate MCs from NCs better than traditional AD biomarkers (AUC>0.89). Interpretation: Our findings comprehensively described early proteomic changes associated with ADAD and captured specific biological processes that happen in the early phases of the disease, fifteen to five years before clinical onset. We identified a small subset of proteins with the potentials to become therapy-monitoring biomarkers of ADAD MCs. Funding: Proteomic data generation was supported by NIH: RF1AG044546.

20.
Res Sq ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38585969

ABSTRACT

The pathophysiological mechanisms driving disease progression of frontotemporal lobar degeneration (FTLD) and corresponding biomarkers are not fully understood. We leveraged aptamer-based proteomics (> 4,000 proteins) to identify dysregulated communities of co-expressed cerebrospinal fluid proteins in 116 adults carrying autosomal dominant FTLD mutations (C9orf72, GRN, MAPT) compared to 39 noncarrier controls. Network analysis identified 31 protein co-expression modules. Proteomic signatures of genetic FTLD clinical severity included increased abundance of RNA splicing (particularly in C9orf72 and GRN) and extracellular matrix (particularly in MAPT) modules, as well as decreased abundance of synaptic/neuronal and autophagy modules. The generalizability of genetic FTLD proteomic signatures was tested and confirmed in independent cohorts of 1) sporadic progressive supranuclear palsy-Richardson syndrome and 2) frontotemporal dementia spectrum syndromes. Network-based proteomics hold promise for identifying replicable molecular pathways in adults living with FTLD. 'Hub' proteins driving co-expression of affected modules warrant further attention as candidate biomarkers and therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL