Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Neurosci ; 38(45): 9781-9800, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30266742

ABSTRACT

There has been a growing interest toward mitochondrial fatty acid synthesis (mtFAS) since the recent discovery of a neurodegenerative human disorder termed MEPAN (mitochondrial enoyl reductase protein associated neurodegeneration), which is caused by mutations in the mitochondrial enoyl-CoA/ACP (acyl carrier protein) reductase (MECR) carrying out the last step of mtFAS. We show here that MECR protein is highly expressed in mouse Purkinje cells (PCs). To elucidate mtFAS function in neural tissue, here, we generated a mouse line with a PC-specific knock-out (KO) of Mecr, leading to inactivation of mtFAS confined to this cell type. Both sexes were studied. The mitochondria in KO PCs displayed abnormal morphology, loss of protein lipoylation, and reduced respiratory chain enzymatic activities by the time these mice were 6 months of age, followed by nearly complete loss of PCs by 9 months of age. These animals exhibited balancing difficulties ∼7 months of age and ataxic symptoms were evident from 8-9 months of age on. Our data show that impairment of mtFAS results in functional and ultrastructural changes in mitochondria followed by death of PCs, mimicking aspects of the clinical phenotype. This KO mouse represents a new model for impaired mitochondrial lipid metabolism and cerebellar ataxia with a distinct and well trackable cellular phenotype. This mouse model will allow the future investigation of the feasibility of metabolite supplementation approaches toward the prevention of neurodegeneration due to dysfunctional mtFAS.SIGNIFICANCE STATEMENT We have recently reported a novel neurodegenerative disorder in humans termed MEPAN (mitochondrial enoyl reductase protein associated neurodegeneration) (Heimer et al., 2016). The cause of neuron degeneration in MEPAN patients is the dysfunction of the highly conserved mitochondrial fatty acid synthesis (mtFAS) pathway due to mutations in MECR, encoding mitochondrial 2-enoyl-CoA/ACP reductase. The report presented here describes the analysis of the first mouse model suffering from mtFAS-defect-induced neurodegenerative changes due to specific disruption of the Mecr gene in Purkinje cells. Our work sheds a light on the mechanisms of neurodegeneration caused by mtFAS deficiency and provides a test bed for future treatment approaches.


Subject(s)
Cerebellum/metabolism , Fatty Acids/biosynthesis , Mitochondria/metabolism , Nerve Degeneration/metabolism , Animals , Animals, Newborn , Cerebellum/pathology , Fatty Acids/genetics , Female , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Mitochondria/genetics , Mitochondria/pathology , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Oxidoreductases Acting on CH-CH Group Donors/biosynthesis , Oxidoreductases Acting on CH-CH Group Donors/genetics
2.
Circulation ; 130(13): 1044-52, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25070665

ABSTRACT

BACKGROUND: Accurate detection of recurrent same-site deep vein thrombosis (DVT) is a challenging clinical problem. Because DVT formation and resolution are associated with a preponderance of inflammatory cells, we investigated whether noninvasive (18)F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging could identify inflamed, recently formed thrombi and thereby improve the diagnosis of recurrent DVT. METHODS AND RESULTS: We established a stasis-induced DVT model in murine jugular veins and also a novel model of recurrent stasis DVT in mice. C57BL/6 mice (n=35) underwent ligation of the jugular vein to induce stasis DVT. FDG-PET/computed tomography (CT) was performed at DVT time points of day 2, 4, 7, 14, or 2+16 (same-site recurrent DVT at day 2 overlying a primary DVT at day 16). Antibody-based neutrophil depletion was performed in a subset of mice before DVT formation and FDG-PET/CT. In a clinical study, 38 patients with lower extremity DVT or controls undergoing FDG-PET were analyzed. Stasis DVT demonstrated that the highest FDG signal occurred at day 2, followed by a time-dependent decrease (P<0.05). Histological analyses demonstrated that thrombus neutrophils (P<0.01), but not macrophages, correlated with thrombus PET signal intensity. Neutrophil depletion decreased FDG signals in day 2 DVT in comparison with controls (P=0.03). Recurrent DVT demonstrated significantly higher FDG uptake than organized day 14 DVT (P=0.03). The FDG DVT signal in patients also exhibited a time-dependent decrease (P<0.01). CONCLUSIONS: Noninvasive FDG-PET/CT identifies neutrophil-dependent thrombus inflammation in murine DVT, and demonstrates a time-dependent signal decrease in both murine and clinical DVT. FDG-PET/CT may offer a molecular imaging strategy to accurately diagnose recurrent DVT.


Subject(s)
Neutrophils/diagnostic imaging , Positron-Emission Tomography , Thrombosis/diagnostic imaging , Tomography, X-Ray Computed , Venous Thrombosis/diagnostic imaging , Animals , Case-Control Studies , Cohort Studies , Disease Models, Animal , Female , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Ligation , Male , Mice , Mice, Inbred C57BL , Middle Aged , Multimodal Imaging , Neutropenia/diagnostic imaging , Recurrence , Retrospective Studies , Sensitivity and Specificity , Thrombosis/metabolism , Time Factors , Venous Thrombosis/metabolism
3.
J Neuroinflammation ; 12: 217, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26597638

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative motor neuron disorder. Genetic studies have linked mutation of the gene SOD1 to ALS pathology as well as several other pathological processes including modulation of glutamatergic function and inflammatory processes. Since therapeutic approaches for ALS are focused on glutamatergic function, we investigated modulation of glutamate transport based on its receptor function as well as excitotoxicity-induced inflammatory response. METHODS: In vivo positron emission tomography (PET) imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) using [(18)F]FPEB ([(18)F]3-fluoro-5-(2-pyridylethynyl)benzonitrile) and inflammatory response using [(11)C]PBR28 (peripheral benzodiazepine receptor ligand 28) were done in an early and a late phase of neurodegeneration in four ALS mice expressing SOD1-G93A gene and four control base mice (C57/BL6). Accumulation of [(18)F]FPEB and [(11)C]PBR28 were quantitated in several brain areas and spinal cord to determine degeneration-induced modulation. The studies were completed with immunohistochemical analyses of mGluR5 and inflammatory response. RESULTS: These studies showed enhanced binding potential of [(18)F]FPEB in several brain areas including striatum, hippocampus, and frontal cortex. In the whole brain, the binding potential increased 49 ± 9 % from base mice to ALS-type mice and further enhanced 23 ± 4 % during disease progression. Also, in the spinal cord 6-22 %, enhanced accumulation of [(18)F]FPEB was observed during progression of the disease. The accumulation of [(11)C]PBR28 increased by 110 ± 33 % in the whole brain during progression of the disease indicating significant inflammatory process. [(11)C]PBR28 accumulation enhanced 89-264 % in the spinal cord and 204 % in the lungs. The end point immunohistochemical analyses verified the enhanced mGluR5 expression and inflammation. CONCLUSIONS: These results confirm the role of glutamate and inflammation in ALS-type pathology. These data also support the hypothesis that excessive glutamate may contribute to inflammation in the chronic neurodegenerative processes in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/metabolism , Disease Models, Animal , Positron-Emission Tomography , Receptor, Metabotropic Glutamate 5/biosynthesis , Superoxide Dismutase/biosynthesis , Amyotrophic Lateral Sclerosis/genetics , Animals , Disease Progression , Gene Expression Regulation , Humans , Inflammation/diagnostic imaging , Inflammation/genetics , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Positron-Emission Tomography/methods , Receptor, Metabotropic Glutamate 5/genetics , Superoxide Dismutase/genetics
4.
Int J Pharm ; 652: 123764, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38176479

ABSTRACT

Triple-negative breast cancer (TNBC) diagnosis remains challenging without expressing critical receptors. Cancer cell membrane (CCm) coating has been extensively studied for targeted cancer diagnostics due to attractive features such as good biocompatibility and homotypic tumor-targeting. However, the present study found that widely used CCm coating approaches, such as extrusion, were not applicable for functionalizing irregularly shaped nanoparticles (NPs), such as porous silicon (PSi). To tackle this challenge, we proposed a novel approach that employs polyethylene glycol (PEG)-assisted membrane coating, wherein PEG and CCm are respectively functionalized on PSi NPs through chemical conjugation and physical absorption. Meanwhile, the PSi NPs were grafted with the bisphosphonate (BP) molecules for radiolabeling. Thanks to the good chelating ability of BP and homotypic tumor targeting of cancer CCm coating, a novel PSi-based contrast agent (CCm-PEG-89Zr-BP-PSi) was developed for targeted positron emission tomography (PET)/computed tomography (CT) imaging of TNBC. The novel imaging agent showed good radiochemical purity (∼99 %) and stability (∼95 % in PBS and ∼99 % in cell medium after 48 h). Furthermore, the CCm-PEG-89Zr-BP-PSi NPs had efficient homotypic targeting ability in vitro and in vivo for TNBC. These findings demonstrate a versatile biomimetic coating method to prepare novel NPs for tumor-targeted diagnosis.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Humans , Positron Emission Tomography Computed Tomography , Polyethylene Glycols/chemistry , Silicon , Triple Negative Breast Neoplasms/diagnostic imaging , Biomimetics , Nanoparticles/chemistry , Cell Membrane/metabolism , Cell Line, Tumor
5.
Bioorg Med Chem ; 21(19): 5955-62, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23978356

ABSTRACT

N-(Chloro-3-methoxyphenyl)-2-picolinamide (3, ML128, VU0361737) is an mGlu4 positive allosteric modulator (PAM), which is potent and centrally penetrating. 3 is also the first mGlu4 PAM to show efficacy in a preclinical Parkinson disease model upon systemic dosing. As a noninvasive medical imaging technique and a powerful tool in neurological research, positron emission tomography (PET) offers a possibility to investigate mGlu4 expression in vivo under physiologic and pathological conditions. We synthesized a carbon-11 labeled ML128 ([(11)C]3) as a PET radiotracer for mGlu4, and characterized its biological properties in Sprague Dawley rats. [(11)C]3 was synthesized from N-(4-chloro-3-hydroxyphenyl)-2-picolinamide (2) using [(11)C]CH3I. Total synthesis time was 38±2.2min (n=7) from the end of bombardment to the formulation. The radioligand [(11)C]3 was obtained in 27.7±5.3% (n=5) decay corrected radiochemical yield based on the radioactivity of [(11)C]CO2. The radiochemical purity of [(11)C]3 was >99%. Specific activity was 188.7±88.8GBq/mol (n=4) at the end of synthesis (EOS). PET images were conducted in 20 normal male Sprague Dawley rats including 11 control studies, 6 studies blocking with an mGlu4 modulator (4) to investigate specificity and 3 studies blocking with an mGlu5 modulator (MTEP) to investigate selectivity. These studies showed fast accumulation of [(11)C]3 (peak activity between 1-3min) in several brain areas including striatum, thalamus, hippocampus, cerebellum, and olfactory bulb following with fast washout. Blocking studies with the mGlu4 modulator 4 showed 22-28% decrease of [(11)C]3 accumulation while studies of selectivity showed only minor decrease supporting good selectivity over mGlu5. Biodistribution studies and blood analyses support fast metabolism. Altogether this is the first PET imaging ligand for mGlu4, in which the labeled ML128 was used for imaging its in vivo distribution and pharmacokinetics in brain.


Subject(s)
Aniline Compounds/chemical synthesis , Carbon Radioisotopes/chemistry , Picolinic Acids/chemical synthesis , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Receptors, Metabotropic Glutamate/chemistry , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Brain Chemistry , Male , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Radiopharmaceuticals/chemistry , Rats , Rats, Sprague-Dawley
6.
J Am Chem Soc ; 134(47): 19338-41, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23137147

ABSTRACT

We provide a new approach for fluorescent probe design termed "PEG-fluorochrome shielding", where PEGylation enhances quantum yields while blocking troublesome interactions between fluorochromes and biomolecules. To demonstrate PEG-fluorochrome shielding, fluorochrome-bearing peptide probes were synthesized, three without PEG and three with a 5 kDa PEG functional group. In vitro, PEG blocked the interactions of fluorochrome-labeled peptide probes with each other (absorption spectra, self-quenching) and reduced nonspecific interactions with cells (by FACS). In vivo, PEG blocked interactions with biomolecules that lead to probe retention (by surface fluorescence). Integrin targeting in vivo was obtained as the differential uptake of an (111)In-labeled, fluorochrome-shielded, integrin-binding RGD probe and a control RAD. Using PEG to block fluorochrome-mediated interactions, rather than synthesizing de novo fluorochromes, can yield new approaches for the design of actively or passively targeted near-infrared fluorescent probes.


Subject(s)
Fluorescent Dyes , Molecular Probes , Peptides , Polyethylene Glycols , Animals , Cell Line, Tumor , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/chemistry , Humans , Mice , Molecular Probes/administration & dosage , Molecular Probes/chemical synthesis , Molecular Structure , Peptides/administration & dosage , Peptides/chemical synthesis , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry
7.
Int J Pharm ; 624: 122040, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35902052

ABSTRACT

Nuclear medicine imaging plays an important role in nanomedicine. However, it is still challenging to develop a versatile platform to make the nonviral nanovectors used in cancer therapy biotraceable. In the present study, a robust approach to radiolabel inorganic nanovectors for SPECT and PET imaging was developed. The approach was based on the bisphosphonates (BP) conjugated on the nanovector, mesoporous silicon (PSi) nanoparticles. BP served as an efficient chelator for various radionuclides. For both of the 99mTc and 68Ga radionuclides utilized, the radiochemical purity and radiochemical yield were ∼99% and ∼90%, respectively. Because of the short decay time of the radionuclides, an easy, fast and effective PEGylation method was developed to improve the residence time in systemic circulation. Both PEG-99mTc-BP-PSi and PEG-68Ga-BP-PSi NPs, where PEGylation was performed after the labeling, had excellent colloidal and radiochemical stability in vitro. The plain particles without PEGylation accumulated fast in the reticuloendothelial system organs upon intravenous administration, while PEGylation prolonged the residence time of the particles in systemic circulation. Overall, the developed approach proved to be applicable for labeling nonviral nanovectors with various radionuclides easily and robustly. Considering the nature of mesoporous nanoparticles, the approach does not hamper the addition of other functionalities on the vector, nor its capability to carry high payloads.


Subject(s)
Gallium Radioisotopes , Nanoparticles , Nanomedicine , Radiopharmaceuticals , Silicon , Tomography, Emission-Computed, Single-Photon
8.
Brain Res ; 1788: 147934, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35483447

ABSTRACT

Hippocampal and thalamo-cortico-striatal networks are critical for memory function as well as execution of a variety of learning strategies. In subjects with memory impairment as a sequel of traumatic brain injury (TBI), the contribution of late metabolic depression across these networks to memory deficit is poorly understood. We used [18F]-FDG-PET to measure chronic post-TBI glucose uptake in the striatum and connected brain areas (septal and temporal hippocampus, thalamus, entorhinal cortex, frontoparietal cortex and amygdala) in rats with lateral fluid-percussion injury (LFPI). Then we assessed a link between network hypometabolism and memory impairment. At 4 months post TBI, glucose uptake was decreased in ipsilateral striatum (10%, p = 0.027), frontoparietal cortex (17%, p = 0.00009), and hippocampus (22%, p = 0.027) as compared to sham operated controls. Thalamic uptake was 6% lower ipsilaterally than contralaterally, p = 0.00004). At 5 months, Morris water maze (MWM) showed memory impairment in 83% of the rats with TBI. The lower the hippocampal or striatal [18F]-FDG uptake, the poorer the MWM performance (hippocampus: r = -0.471, p < 0.05; striatum: r = -0.696, p < 0.001). Striatal [18F]-FDG-PET identified the injured animals with memory impairment with 100% specificity and sensitivity (AUC = 1.000, p = 0.009). Interestingly, the low striatal glucose uptake was a better diagnostic biomarker for memory impairment than the reduced hippocampal (AUC = 0.806, p = 0.112) or entorhinal (AUC = 0.528, p = 0.885) glucose uptake. The volumetric atrophy assessed in T2 weighted MRI or the gliotic area in Nissl staining did not correlate with glucose uptake. Arterial spin labeling did not indicate any reduction in the striatal blood flow. Our study suggests that TBI-induced chronic hypometabolism in striatum contributes to the cognitive deficits.


Subject(s)
Brain Injuries, Traumatic , Fluorodeoxyglucose F18 , Animals , Brain/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/metabolism , Fluorodeoxyglucose F18/metabolism , Glucose/metabolism , Hippocampus/metabolism , Humans , Magnetic Resonance Imaging , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Memory Disorders/metabolism , Percussion , Rats
10.
Stroke ; 41(10): 2335-40, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20814006

ABSTRACT

BACKGROUND AND PURPOSE: Time of ischemia onset is the most critical factor for patient selection for available drug treatment strategies. The purpose of this study was to evaluate the abilities of the absolute longitudinal rotating frame (T(1ρ)) and transverse (T(2)) MR relaxation times to estimate the onset time of ischemia in rats. METHODS: Permanent middle cerebral artery occlusion in rats was used to induce focal cerebral ischemia and animals were imaged with multiparametric MRI at several time points up to 7 hours postischemia. Ischemic parenchyma was defined as tissue with apparent diffusion coefficient of water <70% from that in the contralateral nonischemic brain. RESULTS: The difference in the absolute T(1ρ) and T(2) between ischemic and contralateral nonischemic striatum increased linearly within the first 6 hours of middle cerebral artery occlusion. The slopes for T(1ρ) and T(2) fits for both tissue types were similar; however, the time offsets were significantly longer for both MR parameters in the cortex than in the striatum. CONCLUSIONS: T(1ρ) and T(2) MRI provide estimates for the onset time of cerebral ischemia requiring regional calibration curves from ischemic brain. Assuming that patients with suspected ischemic stroke are scanned by MRI within this timeframe, these MRI techniques may constitute unbiased tools for stroke onset time evaluation potentially aiding the decision-making for drug treatment strategies.


Subject(s)
Brain Ischemia/diagnosis , Cerebral Cortex/physiopathology , Corpus Striatum/physiopathology , Magnetic Resonance Imaging , Animals , Brain Ischemia/physiopathology , Disease Models, Animal , Male , Rats , Rats, Wistar , Time Factors
11.
Sci Rep ; 10(1): 17397, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060694

ABSTRACT

In transcranial magnetic stimulation (TMS), the initial cortical activation due to stimulation is determined by the state of the brain and the magnitude, waveform, and direction of the induced electric field (E-field) in the cortex. The E-field distribution depends on the conductivity geometry of the head. The effects of deviations from a spherically symmetric conductivity profile have been studied in detail in humans. In small mammals, such as rats, these effects are more pronounced due to their less spherical head, proportionally much thicker neck region, and overall much smaller size compared to the TMS coils. In this study, we describe a simple method for building individual realistically shaped head models for rats from high-resolution X-ray tomography images. We computed the TMS-induced E-field with the boundary element method and assessed the effect of head-model simplifications on the estimated E-field. The deviations from spherical symmetry have large, non-trivial effects on the E-field distribution: for some coil orientations, the strongest stimulation is in the brainstem even when the coil is over the motor cortex. With modelling prior to an experiment, such problematic coil orientations can be avoided for more accurate targeting.


Subject(s)
Brain/physiology , Electromagnetic Fields , Head/anatomy & histology , Models, Anatomic , Models, Biological , Transcranial Magnetic Stimulation/methods , Animals , Male , Rats , Rats, Wistar
12.
Mol Neurodegener ; 15(1): 52, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32917267

ABSTRACT

BACKGROUND: Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer's disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. METHODS: To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. RESULTS: Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Immunohistochemical analyses did not reveal changes in the number or morphology of microglia in the cortex of Plcγ2-P522R KI mice. However, the brain mRNA signature together with microglia-related PET imaging suggested enhanced microglial functions in Plcγ2-P522R KI mice. CONCLUSION: The AD-associated protective Plcγ2-P522R variant promotes protective functions associated with TREM2 signaling. Our findings provide further support for the idea that pharmacological modulation of microglia via TREM2-PLCγ2 pathway-dependent stimulation may be a novel therapeutic option for the treatment of AD.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/immunology , Phospholipase C gamma/genetics , Animals , Gene Knock-In Techniques , Genetic Variation , Humans , Macrophages , Mice , Mice, Inbred C57BL , Microglia/immunology , Phospholipase C gamma/immunology
13.
Front Neurosci ; 13: 863, 2019.
Article in English | MEDLINE | ID: mdl-31474824

ABSTRACT

Sustained inflammation in the injured cortex is a promising therapeutic target for disease-modification after traumatic brain injury (TBI). However, its extent and dynamics of expansion are incompletely understood which challenges the timing and placement of therapeutics to lesioned area. Our aim was to characterize the evolution of chronic inflammation during lesion expansion in lateral fluid-percussion injury (FPI) rat model with focus on the MRI-negative perilesional cortex. T2-weighted MR imaging (T2w MRI) and localized magnetic resonance spectroscopy (MRS) were performed at 1, 3, and 6 months post-injury. End-point histology, including Nissl for neuronal death, GFAP for astrogliosis, and Prussian Blue for iron were used to assess perilesional histopathology. An additional animal cohort was imaged with a positron emission tomography (PET) using translocator protein 18 kDa (TSPO) radiotracer [18F]-FEPPA. T2w MRI assessed lesion growth and detected chronic inflammation along the lesion border while rest of the ipsilateral cortex was MRI-negative (MRI-). Instead, myo-inositol that is an inflammatory MRS marker for gliosis, glutathione for oxidative stress, and choline for membrane turnover were elevated throughout the 6-months follow-up in the MRI- perilesional cortex (all p < 0.05). MRS markers revealed chronically sustained inflammation across the ipsilateral cortex but did not indicate the upcoming lesion expansion. Instead, the rostral expansion of the cortical lesion was systematically preceded by a hyperintense band in T2w images months earlier. Histologic analysis of the hyperintensity indicated scattered astrocytes, incomplete glial scar, and intracellularly packed and free iron. Yet, the band was negative in [18F]-FEPPA-PET. [18F]-FEPPA also showed no cortical TSPO expression within the MRS voxel in MRI- perilesional cortex or anywhere along glial scar when assessed at 2 months post-injury. However, [18F]-FEPPA showed a robust signal increase, indicating reactive microgliosis in the ipsilateral thalamus at 2 months post-TBI. We present evidence that MRS reveals chronic posttraumatic inflammation in MRI-negative perilesional cortex. The mismatch in MRS, MRI, and PET measures may allow non-invasive endophenotyping of beneficial and detrimental inflammatory processes to aid targeting and timing of anti-inflammatory therapeutics.

14.
Biomed Spectrosc Imaging ; 8(1-2): 11-28, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31328097

ABSTRACT

BACKGROUND AND OBJECTIVE: In hyperacute ischaemic stroke, T2 of cerebral water increases with time. Quantifying this change may be informative of the extent of tissue damage and onset time. Our objective was to develop a user-unbiased method to measure the effect of cerebral ischaemia on T2 to study stroke onset time-dependency in human acute stroke lesions. METHODS: Six rats were subjected to permanent middle cerebral occlusion to induce focal ischaemia, and a consecutive cohort of acute stroke patients (n = 38) were recruited within 9 hours from symptom onset. T1-weighted structural, T2 relaxometry, and diffusion MRI for apparent diffusion coefficient (ADC) were acquired. Ischaemic lesions were defined as regions of lowered ADC. The median T2 difference (ΔT2) between lesion and contralateral non-ischaemic control region was determined by the newly-developed spherical reference method, and data compared to that obtained by the mirror reference method. Linear regressions and receiver operating characteristics (ROC) were compared between the two methods. RESULTS: ΔT2 increases linearly in rat brain ischaemia by 1.9 ± 0.8 ms/h during the first 6 hours, as determined by the spherical reference method. In patients, ΔT2 linearly increases by 1.6 ± 1.4 and 1.9 ± 0.9 ms/h in the lesion, as determined by the mirror reference and spherical reference method, respectively. ROC analyses produced areas under the curve of 0.83 and 0.71 for the spherical and mirror reference methods, respectively. CONCLUSIONS: Data from the spherical reference method showed that the median T2 increase in the ischaemic lesion is correlated with stroke onset time in a rat as well as in a human patient cohort, opening the possibility of using the approach as a timing tool in clinics.

15.
Neurobiol Aging ; 75: 98-108, 2019 03.
Article in English | MEDLINE | ID: mdl-30554086

ABSTRACT

Type 2 diabetes mellitus (T2DM) increases the risk for Alzheimer's disease (AD). Human AD brains show reduced glucose metabolism as measured by [18F]fluoro-2-deoxy-2-D-glucose positron emission tomography (FDG-PET). Here, we used 14-month-old wild-type (WT) and APPSwe/PS1dE9 (APP/PS1) transgenic mice to investigate how a single dose of intranasal insulin modulates brain glucose metabolism using FDG-PET and affects spatial learning and memory. We also assessed how insulin influences the activity of Akt1 and Akt2 kinases, the expression of glial and neuronal markers, and autophagy in the hippocampus. Intranasal insulin moderately increased glucose metabolism and specifically activated Akt2 and its downstream signaling in the hippocampus of WT, but not APP/PS1 mice. Furthermore, insulin differentially affected the expression of homeostatic microglia markers P2ry12 and Cx3cr1 and autophagy in the hippocampus of WT and APP/PS1 mice. We found no evidence that a single dose of intranasal insulin improves overnight memory. Our results suggest that intranasal insulin exerts diverse effects on Akt2 signaling, autophagy, and the homeostatic status of microglia depending on the degree of AD-related pathology.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Hippocampus/pathology , Proto-Oncogene Proteins c-akt/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Hippocampus/drug effects , Insulin/metabolism , Memory/drug effects , Mice , Neurons/metabolism , Presenilin-1/metabolism
16.
Redox Biol ; 20: 1-12, 2019 01.
Article in English | MEDLINE | ID: mdl-30253279

ABSTRACT

Age-related macular degeneration (AMD) is a multi-factorial disease that is the leading cause of irreversible and severe vision loss in the developed countries. It has been suggested that the pathogenesis of dry AMD involves impaired protein degradation in retinal pigment epithelial cells (RPE). RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, DNA and lipids and evoke tissue deterioration during the aging process. The ubiquitin-proteasome pathway and the lysosomal/autophagosomal pathway are the two major proteolytic systems in eukaryotic cells. NRF-2 (nuclear factor-erythroid 2-related factor-2) and PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) are master transcription factors in the regulation of cellular detoxification. We investigated the role of NRF-2 and PGC-1α in the regulation of RPE cell structure and function by using global double knockout (dKO) mice. The NRF-2/PGC-1α dKO mice exhibited significant age-dependent RPE degeneration, accumulation of the oxidative stress marker, 4-HNE (4-hydroxynonenal), the endoplasmic reticulum stress markers GRP78 (glucose-regulated protein 78) and ATF4 (activating transcription factor 4), and damaged mitochondria. Moreover, levels of protein ubiquitination and autophagy markers p62/SQSTM1 (sequestosome 1), Beclin-1 and LC3B (microtubule associated protein 1 light chain 3 beta) were significantly increased together with the Iba-1 (ionized calcium binding adaptor molecule 1) mononuclear phagocyte marker and an enlargement of RPE size. These histopathological changes of RPE were accompanied by photoreceptor dysmorphology and vision loss as revealed by electroretinography. Consequently, these novel findings suggest that the NRF-2/PGC-1α dKO mouse is a valuable model for investigating the role of proteasomal and autophagy clearance in the RPE and in the development of dry AMD.


Subject(s)
Genetic Predisposition to Disease , Macular Degeneration/genetics , Macular Degeneration/pathology , NF-E2-Related Factor 2/deficiency , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/deficiency , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Animals , Autophagy/genetics , Biomarkers , Disease Models, Animal , Electroretinography , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Genetic Association Studies , Immunohistochemistry , Lysosomes/metabolism , Lysosomes/ultrastructure , Macular Degeneration/diagnosis , Macular Degeneration/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondria/ultrastructure , Molecular Imaging , Mutation , Oxidative Stress/genetics , Phenotype , Photoreceptor Cells/metabolism , Protein Aggregation, Pathological , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/ultrastructure
17.
Front Neurosci ; 12: 548, 2018.
Article in English | MEDLINE | ID: mdl-30177870

ABSTRACT

Functional magnetic resonance imaging (fMRI) is a powerful noninvasive tool for studying spontaneous resting state functional connectivity (RSFC) in laboratory animals. Brain function can be significantly affected by generally used anesthetics, however, rendering the need for awake imaging. Only a few different awake animal habituation protocols have been presented, and there is a critical need for practical and improved low-stress techniques. Here we demonstrate a novel restraint approach for awake rat RSFC studies. Our custom-made 3D printed restraint kit is compatible with a standard Bruker Biospin MRI rat bed, rat brain receiver coil, and volume transmitter coil. We also implemented a progressive habituation protocol aiming to minimize the stress experienced by the rats, and compared RSFC between awake, lightly sedated, and isoflurane-anesthetized rats. Our results demonstrated that the 3D printed restraint kit was suitable for RSFC studies of awake rats. During the short 4-day habituation period, the plasma corticosterone concentration, movement, and heart rate, which were measured as stress indicators, decreased significantly, indicating adaptation to the restraint protocol. Additionally, 10 days after the awake MRI session, rats exhibited no signs of depression or anxiety based on open-field and sucrose preference behavioral tests. The RSFC data revealed significant changes in the thalamo-cortical and cortico-cortical networks between the awake, lightly sedated, and anesthetized groups, emphasizing the need for awake imaging. The present work demonstrates the feasibility of our custom-made 3D printed restraint kit. Using this kit, we found that isoflurane markedly affected brain connectivity compared with that in awake rats, and that the effect was less pronounced, but still significant, when light isoflurane sedation was used instead.

18.
Neurosci Lett ; 428(2-3): 99-102, 2007 Nov 27.
Article in English | MEDLINE | ID: mdl-17954010

ABSTRACT

The Rose Bengal model in rats is widely used to study brain plasticity, functional recovery and restorative therapies. The present study evaluated temporal profiles of hemorrhage and edema by magnetic resonance imaging (MRI) in rats in relation to sensorimotor impairment after photochemically induced cortical infarct. Adult, male Wistar rats were injected with Rose Bengal dye followed by illumination to produce a lesion over the sensorimotor cortex. Brain damage including infarct volume, edema, and bleeding was determined from postoperative days 1 to 10 by using MRI. Prussian blue staining was used to confirm hemorrhage in perfused brain sections. Functional outcome was assessed by limb-placing test during the follow-up. A consistent cortical lesion was detected in T(2) weighted MRI 24h after cortical photothrombosis without any signs of blood in T(2)(*) weighted images. However, from postoperative days 3 to 8, hemorrhage was indicated by almost complete signal void in T(2)(*) weighted gradient echo images and confirmed by Perls' Prussian blue staining on postoperative day 10 for presence of iron in corresponding lesion areas. The subacute appearance of hemorrhage on postoperative days 3-8 and resolution of edema coincides with improved performance in the limb-placing test. The results suggest that bleeding around cortical infarct is part of the wound healing process and may not impair functional outcome.


Subject(s)
Brain Edema/physiopathology , Cerebral Cortex/physiopathology , Intracranial Hemorrhages/physiopathology , Recovery of Function/physiology , Rose Bengal , Stroke/physiopathology , Animals , Brain Edema/chemically induced , Brain Edema/etiology , Cerebral Arteries/drug effects , Cerebral Arteries/physiopathology , Cerebral Cortex/blood supply , Cerebral Cortex/pathology , Disease Models, Animal , Ferrocyanides , Fluorescent Dyes , Hemosiderin/analysis , Hemosiderin/metabolism , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/etiology , Intracranial Thrombosis/chemically induced , Intracranial Thrombosis/complications , Intracranial Thrombosis/physiopathology , Iron/analysis , Iron/metabolism , Magnetic Resonance Imaging , Male , Movement Disorders/etiology , Movement Disorders/pathology , Movement Disorders/physiopathology , Rats , Rats, Wistar , Sensation Disorders/etiology , Sensation Disorders/pathology , Sensation Disorders/physiopathology , Stroke/chemically induced , Stroke/complications , Time Factors , Wound Healing/physiology
19.
J Vis Exp ; (127)2017 09 16.
Article in English | MEDLINE | ID: mdl-28994754

ABSTRACT

MRI provides a sensitive and specific imaging tool to detect acute ischemic stroke by means of a reduced diffusion coefficient of brain water. In a rat model of ischemic stroke, differences in quantitative T1 and T2 MRI relaxation times (qT1 and qT2) between the ischemic lesion (delineated by low diffusion) and the contralateral non-ischemic hemisphere increase with time from stroke onset. The time dependency of MRI relaxation time differences is heuristically described by a linear function and thus provides a simple estimate of stroke onset time. Additionally, the volumes of abnormal qT1 and qT2 within the ischemic lesion increase linearly with time providing a complementary method for stroke timing. A (semi)automated computer routine based on the quantified diffusion coefficient is presented to delineate acute ischemic stroke tissue in rat ischemia. This routine also determines hemispheric differences in qT1 and qT2 relaxation times and the location and volume of abnormal qT1 and qT2 voxels within the lesion. Uncertainties associated with onset time estimates of qT1 and qT2 MRI data vary from ± 25 min to ± 47 min for the first 5 hours of stroke. The most accurate onset time estimates can be obtained by quantifying the volume of overlapping abnormal qT1 and qT2 lesion volumes, termed 'Voverlap' (± 25 min) or by quantifying hemispheric differences in qT2 relaxation times only (± 28 min). Overall, qT2 derived parameters outperform those from qT1. The current MRI protocol is tested in the hyperacute phase of a permanent focal ischemia model, which may not be applicable to transient focal brain ischemia.


Subject(s)
Brain Ischemia/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging , Animals , Brain/pathology , Brain Ischemia/pathology , Male , Rats , Rats, Wistar , Stroke/pathology , Time Factors
20.
J Vis Exp ; 2017(127)2017 09.
Article in English | MEDLINE | ID: mdl-28979652

ABSTRACT

MRI provides a sensitive and specific imaging tool to detect acute ischemic stroke by means of a reduced diffusion coefficient of brain water. In a rat model of ischemic stroke, differences in quantitative T1 and T2 MRI relaxation times (qT1 and qT2) between the ischemic lesion (delineated by low diffusion) and the contralateral non-ischemic hemisphere increase with time from stroke onset. The time dependency of MRI relaxation time differences is heuristically described by a linear function and thus provides a simple estimate of stroke onset time. Additionally, the volumes of abnormal qT1 and qT2 within the ischemic lesion increase linearly with time providing a complementary method for stroke timing. A (semi)automated computer routine based on the quantified diffusion coefficient is presented to delineate acute ischemic stroke tissue in rat ischemia. This routine also determines hemispheric differences in qT1 and qT2 relaxation times and the location and volume of abnormal qT1 and qT2 voxels within the lesion. Uncertainties associated with onset time estimates of qT1 and qT2 MRI data vary from ± 25 min to ± 47 min for the first 5 hours of stroke. The most accurate onset time estimates can be obtained by quantifying the volume of overlapping abnormal qT1 and qT2 lesion volumes, termed 'Voverlap' (± 25 min) or by quantifying hemispheric differences in qT2 relaxation times only (± 28 min). Overall, qT2 derived parameters outperform those from qT1. The current MRI protocol is tested in the hyperacute phase of a permanent focal ischemia model, which may not be applicable to transient focal brain ischemia.


Subject(s)
Brain Ischemia/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging , Animals , Brain/pathology , Brain Ischemia/pathology , Male , Rats , Stroke/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL