Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
Add more filters

Publication year range
1.
Clin Microbiol Rev ; 36(1): e0024121, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36625671

ABSTRACT

Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.


Subject(s)
COVID-19 , Malaria , Parasitic Diseases , Humans , Parasitic Diseases/prevention & control
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338980

ABSTRACT

Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.


Subject(s)
Schistosoma japonicum , Schistosomiasis japonica , Schistosomiasis , Vaccines , Animals , Female , Cattle , Humans , Schistosomiasis japonica/prevention & control , Schistosomiasis japonica/veterinary , Vaccination , China/epidemiology , Buffaloes
3.
Curr Genomics ; 24(3): 155-170, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38178986

ABSTRACT

Background: Recent studies on CRISPR/Cas9-mediated gene editing in Schistosoma mansoni have shed new light on the study and control of this parasitic helminth. However, the gene editing efficiency in this parasite is modest. Methods: To improve the efficiency of CRISPR/Cas9 genome editing in schistosomes, we used lentivirus, which has been effectively used for gene editing in mammalian cells, to deliver plasmid DNA encoding Cas9 nuclease, a sgRNA targeting acetylcholinesterase (SmAChE) and a mCherry fluorescence marker into schistosomes. Results: MCherry fluorescence was observed in transduced eggs, schistosomula, and adult worms, indicating that the CRISPR components had been delivered into these parasite stages by lentivirus. In addition, clearly changed phenotypes were observed in SmAChE-edited parasites, including decreased SmAChE activity, reduced hatching ability of edited eggs, and altered behavior of miracidia hatched from edited eggs. Next-generation sequencing analysis demonstrated that the lentiviral transduction-based CRISPR/Cas9 gene modifications in SmAChE-edited schistosomes were homology-directed repair predominant but with much lower efficiency than that obtained using electroporation (data previously published by our laboratory) for the delivery of CRISPR components. Conclusion: Taken together, electroporation is more efficient than lentiviral transduction in the delivery of CRISPR/Cas9 into schistosomes for programmed genome editing. The exploration of tactics for enhancing CRISPR/Cas9 gene editing provides the basis for the future improvement of programmed genome editing in S. mansoni.

4.
Bioessays ; 43(1): e2000185, 2021 01.
Article in English | MEDLINE | ID: mdl-33145822

ABSTRACT

Recent reports of CRISPR/Cas9 genome editing in parasitic helminths open up new avenues for research on these dangerous pathogens. However, the complex morphology and life cycles inherent to these parasites present obstacles for the efficient application of CRISPR/Cas9-targeted mutagenesis. This is especially true with the trematode flukes where only modest levels of gene mutation efficiency have been achieved. Current major challenges in the application of CRISPR/Cas9 for study of parasitic worms thus lie in enhancing gene mutation efficiency and overcoming issues involved in host passage so that mutated parasites survive. Strategies developed for CRISPR/Cas9 studies on Caenorhabditis elegans, protozoa and mammalian cells, including novel delivery methods, the choice of selectable markers, and refining mutation precision represent novel tactics whereby these impediments can be overcome. Furthermore, employing CRISPR/Cas9-mediated gene drive to interfere with vector transmission represents a novel approach for the control of parasitic worms that is worthy of further exploration.


Subject(s)
CRISPR-Cas Systems , Parasites , Animals , CRISPR-Cas Systems/genetics , Caenorhabditis elegans/genetics , Gene Editing , Mutagenesis
5.
J Strength Cond Res ; 37(1): 55-61, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36515590

ABSTRACT

ABSTRACT: Jones, MJ, Dominguez, JF, Macatugal, C, Coleman, K, Reed, B, and Schroeder, ET. Low load with BFR vs. high load without BFR eccentric hamstring training have similar outcomes on muscle adaptation. J Strength Cond Res 37(1): 55-61, 2023-A key principle of hamstring injury rehabilitation is developing high eccentric force capability through resistance training (RT). However, it can take months before high-load RT is deemed safe and appropriate for rehabilitating serious hamstring injuries. Low-load blood flow restriction (BFR) RT has been identified as an effective alternative when high-load RT is contraindicated but has been scarcely investigated in the hamstring. To address this gap in knowledge, we sought to compare the effect of longitudinal BFR RT with traditional RT on eccentric hamstring power, strength, lean mass, perceived soreness, and acute muscle swell in healthy adults (n = 40; 19 F, 21 M; mean ± SD; age: 24.3 ± 2.6 years). Our crossover design compared the effects of low-load (30% 1RM) eccentric lower extremity training with BFR (BFR-ELET) with traditional high-load (80% 1RM) eccentric lower extremity training (TRAD-ELET) without BFR biweekly for 6 weeks. Outcomes were tested pre/post-intervention with significance at α = 0.05. Both interventions yielded dependent variable outcomes that did not differ significantly except for muscle swell assessed by bioelectrical impedance analysis, which decreased significantly more in the BFR-ELET condition compared with TRAD-ELET (mean ± SD: -0.32 ± 0.02, Φ° 50 kHz), CI: -0.35 to -0.28, Φ° 50 kHz, p < 0.001, Cohen's d = 2.95). Our findings support BFT-ELET as an effective alternative to TRAD-ELET for enhancing strength and identify myocellular swelling as a potential mediator for strength outcomes associated with BFR training.


Subject(s)
Hamstring Muscles , Resistance Training , Adult , Humans , Young Adult , Regional Blood Flow/physiology , Muscle, Skeletal/physiology , Pain , Muscle Strength/physiology
6.
FASEB J ; 35(1): e21205, 2021 01.
Article in English | MEDLINE | ID: mdl-33337558

ABSTRACT

CRISPR/Cas9-mediated genome editing shows cogent potential for the genetic modification of helminth parasites. We report successful gene knock-in (KI) into the genome of the egg of Schistosoma mansoni by combining CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs). We edited the acetylcholinesterase (AChE) gene of S. mansoni targeting two guide RNAs (gRNAs), X5 and X7, located on exon 5 and exon 7 of Smp_154600, respectively. Eggs recovered from livers of experimentally infected mice were transfected by electroporation with a CRISPR/Cas9-vector encoding gRNA X5 or X7 combining with/ without a ssODN donor. Next generation sequencing analysis of reads of amplicon libraries spanning targeted regions revealed that the major modifications induced by CRISPR/Cas9 in the eggs were generated by homology directed repair (HDR). Furthermore, soluble egg antigen from AChE-edited eggs exhibited markedly reduced AChE activity, indicative that programed Cas9 cleavage mutated the AChE gene. Following injection of AChE-edited schistosome eggs into the tail veins of mice, an significantly enhanced Th2 response involving IL-4, -5, -10, and-13 was detected in lung cells and splenocytes in mice injected with X5-KI eggs in comparison to control mice injected with unmutated eggs. A Th2-predominant response, with increased levels of IL-4, -13, and GATA3, also was induced by X5 KI eggs in small intestine-draining mesenteric lymph node cells when the gene-edited eggs were introduced into the subserosa of the ileum of the mice. These findings confirmed the potential and the utility of CRISPR/Cas9-mediated genome editing for functional genomics in schistosomes.


Subject(s)
Acetylcholinesterase/metabolism , CRISPR-Cas Systems , Gene Editing , Helminth Proteins/metabolism , Schistosoma mansoni/enzymology , Schistosomiasis mansoni/metabolism , Acetylcholinesterase/genetics , Animals , Female , Helminth Proteins/genetics , Mice , Schistosoma mansoni/genetics , Schistosomiasis mansoni/genetics
7.
PLoS Pathog ; 15(1): e1007513, 2019 01.
Article in English | MEDLINE | ID: mdl-30673782

ABSTRACT

Mesenteric infection by the parasitic blood fluke Schistosoma bovis is a common veterinary problem in Africa and the Middle East and occasionally in the Mediterranean Region. The species also has the ability to form interspecific hybrids with the human parasite S. haematobium with natural hybridisation observed in West Africa, presenting possible zoonotic transmission. Additionally, this exchange of alleles between species may dramatically influence disease dynamics and parasite evolution. We have generated a 374 Mb assembly of the S. bovis genome using Illumina and PacBio-based technologies. Despite infecting different hosts and organs, the genome sequences of S. bovis and S. haematobium appeared strikingly similar with 97% sequence identity. The two species share 98% of protein-coding genes, with an average sequence identity of 97.3% at the amino acid level. Genome comparison identified large continuous parts of the genome (up to several 100 kb) showing almost 100% sequence identity between S. bovis and S. haematobium. It is unlikely that this is a result of genome conservation and provides further evidence of natural interspecific hybridization between S. bovis and S. haematobium. Our results suggest that foreign DNA obtained by interspecific hybridization was maintained in the population through multiple meiosis cycles and that hybrids were sexually reproductive, producing viable offspring. The S. bovis genome assembly forms a highly valuable resource for studying schistosome evolution and exploring genetic regions that are associated with species-specific phenotypic traits.


Subject(s)
Hybridization, Genetic/genetics , Schistosoma/genetics , Africa , Africa, Western , Animals , Base Sequence/genetics , Cattle , Chromosome Mapping/methods , DNA/genetics , Genome/genetics , Genome, Mitochondrial/genetics , Hybridization, Genetic/physiology , Middle East , Phylogeny , Proteome/genetics , Species Specificity , Trematoda/genetics , Whole Genome Sequencing/methods
8.
Parasite Immunol ; 42(3): e12693, 2020 03.
Article in English | MEDLINE | ID: mdl-31880816

ABSTRACT

AIMS: Schistosomes infect approximately 250 million people worldwide. To date, there is no effective vaccine available for the prevention of schistosome infection in endemic regions. There remains a need to develop means to confer long-term protection of individuals against reinfection. In this study, an annexin, namely annexin B30, which is highly expressed in the tegument of Schistosoma mansoni was selected to evaluate its immunogenicity and protective efficacy in a mouse model. METHODS AND RESULTS: Bioinformatics analysis showed that there were three potential linear B-cell epitopes and four conformational B-cell epitopes predicted from annexin B30, respectively. Full-length annexin B30 was cloned and expressed in Escherichia coli BL21(DE3). In the presence of adjuvants, the soluble recombinant protein was evaluated for its protective efficacy in two independent vaccine trials. Immunization of CBA mice with recombinant annexin B30 formulated either in alum only or alum/CpG induced a mixed Th1/Th2 cytokine profile but no significant protection against schistosome infection was detected. CONCLUSION: Recombinant annexin B30 did not confer significant protection against the parasite. The molecule may not be suitable for vaccine development. However, it could be an ideal biomarker recommended for immunodiagnostics development.


Subject(s)
Annexins/immunology , Antigens, Helminth/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Adjuvants, Immunologic , Animals , Annexins/administration & dosage , Annexins/analysis , Antibodies, Helminth/immunology , Antibody Formation , Female , Mice , Mice, Inbred CBA , Recombinant Proteins/immunology , Schistosoma mansoni/chemistry , Schistosomiasis mansoni/diagnosis , Vaccines/immunology
9.
Parasitology ; 147(6): 681-688, 2020 05.
Article in English | MEDLINE | ID: mdl-32052727

ABSTRACT

The native rat lungworm (Angiostrongylus mackerrasae) and the invasive rat lungworm (Angiostrongylus cantonensis) occur in eastern Australia. The species identity of A. mackerrasae remained unquestioned until relatively recently, when compilation of mtDNA data indicated that A. mackerrasae sensu Aghazadeh et al. (2015b) clusters within A. cantonensis based on their mitochondrial genomes (mtDNA). To re-evaluate the species identity of A. mackerrasae, we sought material that would be morphologically conspecific with A. mackerrasae. We combined morphological and molecular approaches to confirm or refute the specific status of A. mackerrasae. Nematodes conspecific with A. mackerrasae from Rattus fuscipes and Rattus rattus were collected in Queensland, Australia. Morphologically identified A. mackerrasae voucher specimens were characterized using amplification of cox1 followed by the generation of reference complete mtDNA. The morphologically distinct A. cantonensis, A. mackerrasae and A. malaysiensis are genetically distinguishable forming a monophyletic mtDNA lineage. We conclude that A. mackerrasae sensu Aghazadeh et al. (2015b) is a misidentified specimen of A. cantonensis. The availability of the mtDNA genome of A. mackerrasae enables its unequivocal genetic identification and differentiation from other Angiostrongylus species.


Subject(s)
Angiostrongylus/classification , Genome, Helminth , Genome, Mitochondrial , Angiostrongylus/anatomy & histology , Angiostrongylus/enzymology , Angiostrongylus/genetics , Animals , DNA, Helminth/analysis , DNA, Mitochondrial/analysis , Electron Transport Complex IV/analysis , Helminth Proteins/analysis , Queensland , Rats
10.
Parasitology ; 147(13): 1488-1498, 2020 11.
Article in English | MEDLINE | ID: mdl-32741402

ABSTRACT

Praziquantel (PZQ) is the drug of choice for schistosomiasis. The potential drug resistance necessitates the search for adjunct or alternative therapies to PZQ. Previous functional genomics has shown that RNAi inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) gene in Schistosoma adult worms significantly improved the effectiveness of PZQ. Here we tested the in vitro efficacy of 15 selective and non-selective CaMK inhibitors against Schistosoma mansoni and showed that PZQ efficacy was improved against refractory juvenile parasites when combined with these CaMK inhibitors. By measuring CaMK activity and the mobility of adult S. mansoni, we identified two non-selective CaMK inhibitors, Staurosporine (STSP) and 1Naphthyl PP1 (1NAPP1), as promising candidates for further study. The impact of STSP and 1NAPP1 was investigated in mice infected with S. mansoni in the presence or absence of a sub-lethal dose of PZQ against 2- and 7-day-old schistosomula and adults. Treatment with STSP/PZQ induced a significant (47-68%) liver egg burden reduction compared with mice treated with PZQ alone. The findings indicate that the combination of STSP and PZQ dosages significantly improved anti-schistosomal activity compared to PZQ alone, demonstrating the potential of selective and non-selective CaMK/kinase inhibitors as a combination therapy with PZQ in treating schistosomiasis.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Praziquantel/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/prevention & control , Schistosomicides/pharmacology , Animals , Female , Liver/parasitology , Male , Mice , Parasite Egg Count
11.
Parasitol Res ; 119(8): 2495-2503, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32556501

ABSTRACT

In the present work, we reported for the first time the microbiome from Phyllocaulis soleiformis and Biomphalaria glabrata assessed using high-throughput DNA sequencing pre- and post-infection with the helminth parasite Angiostrongylus cantonensis. B. glabrata and P. soleiformis were experimentally infected with A. cantonensis. Fecal DNAs from control and infected groups were extracted and subjected to 16S rRNA high-throughput sequencing survey. No significant differences were found in the alpha diversity indexes in Phyllocaulis and Biomphalaria experiments independently. PCoA analysis using the unweighted UniFrac measures showed that both microbiotas behaved differently depending on the host. In Biomphalaria microbiota, control and infected groups were significantly different (p = 0.0219), while Phyllocaulis samples were not (p = 0.5190). The microbiome of P. soleiformis infected with A. cantonensis showed a significant decrease of Sphingobacterium and a substantial increase of Cellvibrio when compared to a control group. The microbiome of B. glabrata infected with A. cantonensis showed a significant decline in the abundance of Flavobacterium, Fluviicola, Nitrospira, Vogesella and an OTU belonging to the family Comamonadaceae, and a significant increase of Uliginosibacterium and an OTU belonging to the family Weeksellaceae when compared to a control group. Overall, the microbiome data reported here provided valuable information with regard to the diversity of bacterial communities that comprise the gut microbiome of gastropods. Furthermore, we report here the effect of the infection of the helminth A. cantonensis in the ratio and distribution of the fecal microbiome of the snails. Further studies are highly valuable in order to better understand those interactions by comparing different microbiome profiles and mollusk models. By now, we anticipate that ecological studies will take significant advantage of these advances, particularly concerning improving our understanding of helminth-microbiome-host interactions.


Subject(s)
Angiostrongylus cantonensis/isolation & purification , Bacteria/isolation & purification , Biomphalaria/microbiology , Biomphalaria/parasitology , Microbiota , Angiostrongylus cantonensis/genetics , Angiostrongylus cantonensis/physiology , Animals , Bacteria/classification , Bacteria/genetics , Fresh Water/parasitology , Host-Parasite Interactions , RNA, Ribosomal, 16S
12.
Parasitology ; 146(10): 1217-1232, 2019 09.
Article in English | MEDLINE | ID: mdl-31057132

ABSTRACT

The investigation of the glycan repertoire of several organisms has revealed a wide variation in terms of structures and abundance of glycan moieties. Among the parasites, it is possible to observe different sets of glycoconjugates across taxa and developmental stages within a species. The presence of distinct glycoconjugates throughout the life cycle of a parasite could relate to the ability of that organism to adapt and survive in different hosts and environments. Carbohydrates on the surface, and in excretory-secretory products of parasites, play essential roles in host-parasite interactions. Carbohydrate portions of complex molecules of parasites stimulate and modulate host immune responses, mainly through interactions with specific receptors on the surface of dendritic cells, leading to the generation of a pattern of response that may benefit parasite survival. Available data reviewed here also show the frequent aspect of parasite immunomodulation of mammalian responses through specific glycan interactions, which ultimately makes these molecules promising in the fields of diagnostics and vaccinology.


Subject(s)
Glycoconjugates/analysis , Host-Parasite Interactions , Parasites/chemistry , Parasites/growth & development , Animals , Diagnostic Tests, Routine/methods , Life Cycle Stages , Parasites/immunology , Parasitic Diseases/diagnosis , Parasitic Diseases/prevention & control , Vaccines/immunology
13.
Int J Mol Sci ; 20(7)2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30925781

ABSTRACT

We showed previously that the Schistosoma japonicum insulin-like peptide (SjILP) binds the worm insulin receptors, thereby, activating the parasite's insulin pathway and emphasizing its important role in regulating uptake of glucose, a nutrient essential for parasite survival. Here we show that SjILP is differentially expressed in the schistosome life cycle and is especially highly transcribed in eggs, miracidia, and adult female worms. RNA inference was employed to knockdown SjILP in adults in vitro, with suppression confirmed by significantly reduced protein production, declined adenosine diphosphate levels, and reduction in glucose consumption. Immunolocalization showed that SjILP is located to lateral gland cells of mature intra-ovular miracidia in the schistosome egg, and is distributed on the ciliated epithelium and internal cell masses of newly transformed miracidia. In schistosomula, SjILP is present on the tegument in two antero-lateral points, indicating highly polarized expression during cercarial transformation. Analysis of serum from S. japonicum-infected mice by ELISA using a recombinant form of SjILP as an antigen revealed IgG immunoreactivity to this molecule at 7 weeks post-infection indicating it is likely secreted from mature eggs into the host circulation. These findings provide further insights on ILP function in schistosomes and its essential roles in parasite survival and growth in different development stages.


Subject(s)
Gene Expression Regulation, Developmental , Helminth Proteins/genetics , Insulin/genetics , Schistosoma japonicum/growth & development , Schistosoma japonicum/genetics , Schistosomiasis japonica/parasitology , Animals , Female , Helminth Proteins/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Insulin/immunology , Life Cycle Stages , Male , Mice , Mice, Inbred BALB C , Schistosoma japonicum/immunology , Schistosomiasis japonica/blood , Schistosomiasis japonica/immunology
14.
Biochem Soc Trans ; 46(6): 1743-1751, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30420417

ABSTRACT

In eukaryotes, effective calcium homeostasis is critical for many key biological processes. There is an added level of complexity in parasites, particularly multicellular helminth worms, which modulate calcium levels while inhabiting the host microenvironment. Parasites ensure efficient calcium homeostasis through gene products, such as the calmodulin-dependent kinases (CaMK), the main focus of this review. The importance of CaMK is becoming increasingly apparent from recent functional studies of helminth and protozoan parasites. Investigations on the molecular regulation of calcium and the role of CaMK are important for both supplementing current drug regimens and finding new antiparasitic compounds. Whereas calcium regulators, including CaMK, are well characterised in mammalian systems, knowledge of their functional properties in parasites is increasing but is still in its infancy.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Helminths/pathogenicity , Animals , Calcium Signaling , Humans
15.
Int J Mol Sci ; 19(8)2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30115897

ABSTRACT

To further investigate the importance of Schistosoma japonicum acetylcholinesterase (SjAChE) in cholinergic signaling for parasite growth and development, we used RNA interference (RNAi) to knock-down its expression in adults and eggs in vitro. This resulted in its reduced transcription but also expression of other important genes involved both in cholinergic signaling and glucose uptake were impacted substantially. Significant decreases in AChE protein expression, AChE enzymatic activity, and glucose uptake were observed in the SjAChE-knockdown parasites compared with luciferase controls. In vaccine/challenge experiments, we found that immunization of mice with recombinant SjAChE (rSjAChE) expressed in Escherichia coli elicited reductions in male worm numbers (33%), liver granuloma density (41%), and reduced numbers of mature intestinal eggs (73%) in the vaccinated group compared with the control group. These results indicate AChE plays an important role in the metabolism of male worms, and impacts indirectly on female fecundity leading to increased numbers of immature eggs being released and reduced sizes of liver granulomas. Furthermore, cytokine analysis showed that immunization of mice with rSjAChE elicited a predominantly Th1-type immune response characterized by increased production of IFNγ in splenic CD4⁺ T cells of vaccinated mice. The study confirms the potential of SjAChE as a vaccine/drug candidate against zoonotic schistosomiasis japonica.


Subject(s)
Acetylcholinesterase/metabolism , Parasites/enzymology , Parasites/growth & development , Schistosoma japonicum/enzymology , Schistosoma japonicum/growth & development , Animals , Antibody Formation , Cytokines/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Glucose/metabolism , Liver/parasitology , Liver/pathology , Mice, Inbred CBA , Ovum/metabolism , Parasites/genetics , RNA Interference , RNA, Double-Stranded/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Schistosoma japonicum/genetics , Schistosomiasis japonica/immunology , Schistosomiasis japonica/parasitology , Spleen/metabolism , Transcription, Genetic , Treatment Outcome , Vaccination , Vaccines/immunology
16.
Exp Parasitol ; 177: 28-34, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28431921

ABSTRACT

A diagnostic test that is reliable, sensitive, and applicable in the field is extremely important in epidemiological surveys, during medical treatment for schistosomiasis, and for the control and elimination of schistosomiasis. The Helmintex (HTX) method is based on the use of magnetic beads to trap eggs in a magnetic field. This technique is highly sensitive, but the screening of fecal samples consumes lots of time, thus delaying the results, especially in field studies. The objective of this work was to determine the effects of incorporation of the detergent Tween-20 into the method in an attempt to decrease the final pellet volume produced by the HTX method as well as the use of ninhydrin to stain the Schistosoma mansoni eggs. We showed that these modifications reduced the final volume of the fecal sediment produced in the last step of the HTX method by up to 69% and decreased the screening time to an average of 10.1 min per sample. The use of Tween 20 and ninhydrin led to a high percentage of egg recovery (27.2%). The data obtained herein demonstrate that the addition of detergent and the use of ninhydrin to the HTX process can optimize the screening step and also improve egg recovery, thus justifying the insertion of these steps into the HTX method.


Subject(s)
Feces/parasitology , Schistosoma mansoni/isolation & purification , Schistosomiasis mansoni/diagnosis , Animals , Cellulase/metabolism , Humans , Indicators and Reagents , Magnetic Fields , Mice , Ninhydrin , Ovum , Parasite Egg Count/methods , Polysorbates , Surface-Active Agents , Time Factors , Tissue Fixation/methods
17.
Ecol Appl ; 26(4): 1136-53, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27509754

ABSTRACT

Conserving migratory birds is made especially difficult because of movement among spatially disparate locations across the annual cycle. In light of challenges presented by the scale and ecology of migratory birds, successful conservation requires integrating objectives, management, and monitoring across scales, from local management units to ecoregional and flyway administrative boundaries. We present an integrated approach using a spatially explicit energetic-based mechanistic bird migration model useful to conservation decision-making across disparate scales and locations. This model moves a Mallard-like bird (Anas platyrhynchos), through spring and fall migration as a function of caloric gains and losses across a continental-scale energy landscape. We predicted with this model that fall migration, where birds moved from breeding to wintering habitat, took a mean of 27.5 d of flight with a mean seasonal survivorship of 90.5% (95% Cl = 89.2%, 91.9%), whereas spring migration took a mean of 23.5 d of flight with mean seasonal survivorship of 93.6% (95% CI = 92.5%, 94.7%). Sensitivity analyses suggested that survival during migration was sensitive to flight speed, flight cost, the amount of energy the animal could carry, and the spatial pattern of energy availability, but generally insensitive to total energy availability per se. Nevertheless, continental patterns in the bird-use days occurred principally in relation to wetland cover and agricultural habitat in the fall. Bird-use days were highest in both spring and fall in the Mississippi Alluvial Valley and along the coast and near-shore environments of South Carolina. Spatial sensitivity analyses suggested that locations nearer to migratory endpoints were less important to survivorship; for instance, removing energy from a 1036 km2 stopover site at a time from the Atlantic Flyway suggested coastal areas between New Jersey and North Carolina, including the Chesapeake Bay and the North Carolina piedmont, are essential locations for efficient migration and increasing survivorship during spring migration but not locations in Ontario and Massachusetts. This sort of spatially explicit information may allow decision-makers to prioritize their conservation actions toward locations most influential to migratory success. Thus, this mechanistic model of avian migration provides a decision-analytic medium integrating the potential consequences of local actions to flyway-scale phenomena.


Subject(s)
Animal Migration , Anseriformes/physiology , Energy Metabolism/physiology , Models, Biological , Animals , Canada , Environmental Monitoring , United States
18.
Parasitology ; 143(10): 1243-51, 2016 09.
Article in English | MEDLINE | ID: mdl-27278827

ABSTRACT

This study investigated comparatively the pathogenicity of experimental infection of mice and guinea pigs, with Angiostrongylus mackerrasae and the closely related species A. cantonensis. Time course analyses showed that A. mackerrasae causes eosinophilic meningitis in these hosts, which suggests that the species has the potential to cause meningitis in humans and domestic animals. Both A. mackerrasae and the genetically similar A. cantonensis caused eosinophilic meningitis in mice at two time points of 14 and 21 days post infection (dpi). The brain lesions in mice infected with A. mackerrasae were more granulomatous in nature and the parasites were more likely to appear degenerate compared with lesions caused by A. cantonensis. This may indicate that the mouse immune system eliminates A. mackerrasae infection more effectively. The immunologic responses of mice infected with the two Angiostrongylus species was compared by assessing ex vivo stimulated spleen derived T cells and cytokines including interferon-gamma, interleukin 4 and interleukin 17 on 14 and 21 dpi. The results were similar for mice infected with A. cantonensis and A. mackerrasae. Serum from the infected animals with either A. cantonensis or A. mackerrasae recognized total soluble antigen of A. cantonensis female worms on Western blot.


Subject(s)
Angiostrongylus/pathogenicity , Disease Models, Animal , Eosinophilia/parasitology , Meningitis/parasitology , Strongylida Infections/immunology , Strongylida Infections/parasitology , Angiostrongylus/immunology , Angiostrongylus cantonensis/immunology , Angiostrongylus cantonensis/pathogenicity , Animals , Antigens, Helminth/blood , Antigens, Helminth/immunology , Brain/parasitology , Brain/pathology , Cytokines/biosynthesis , Cytokines/immunology , Eosinophilia/immunology , Female , Guinea Pigs , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Meningitis/immunology , Mice , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology
19.
Exp Parasitol ; 169: 13-21, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27373432

ABSTRACT

Infection with the apicomplexan parasite Plasmodium falciparum is a major cause of morbidity and mortality worldwide. One of the striking features of this parasite is its ability to remodel and decrease the deformability of host red blood cells, a process that contributes to disease. To further understand the virulence of Pf we investigated the biochemistry and function of a putative Pf S33 proline aminopeptidase (PfPAP). Unlike other P. falciparum aminopeptidases, PfPAP contains a predicted protein export element that is non-syntenic with other human infecting Plasmodium species. Characterization of PfPAP demonstrated that it is exported into the host red blood cell and that it is a prolyl aminopeptidase with a preference for N-terminal proline substrates. In addition genetic deletion of this exopeptidase was shown to lead to an increase in the deformability of parasite-infected red cells and in reduced adherence to the endothelial cell receptor CD36 under flow conditions. Our studies suggest that PfPAP plays a role in the rigidification and adhesion of infected red blood cells to endothelial surface receptors, a role that may make this protein a novel target for anti-disease interventions strategies.


Subject(s)
Aminopeptidases/metabolism , Erythrocyte Deformability/physiology , Plasmodium falciparum/enzymology , Amino Acid Sequence , Aminopeptidases/chemistry , Aminopeptidases/genetics , Aminopeptidases/immunology , Antibodies, Protozoan/immunology , Blotting, Northern , Blotting, Western , Cell Adhesion/physiology , Elasticity , Erythrocyte Membrane/genetics , Erythrocyte Membrane/physiology , Erythrocytes/parasitology , Gene Knockout Techniques , Humans , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Plasmodium falciparum/genetics , RNA, Protozoan/chemistry , Real-Time Polymerase Chain Reaction , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Sequence Alignment , Transfection
20.
Parasitol Res ; 115(6): 2449-57, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26997340

ABSTRACT

Some cyclophyllidean cestodes provide protection for their eggs in the external environment by providing them with additional protective layers around the egg membranes. In attempting to examine such adaptations, the microanatomy and fine structure of the uterus of pregravid and gravid proglottids of the cyclophyllidean cestode Orthoskrjabinia junlanae, a parasite of mammals that inhabit a terrestrial but moist environment, were studied. In the initial stages of uterine development, developing embryos locate freely in the lumen of a saccate uterus that later partitions into chambers. Each chamber that forms encloses several embryos. The chambers are surrounded by muscle cells that synthesize extracellular matrix actively. The paruterine organs consist of stacks of flattened long outgrowths of muscular cells, interspersed with small lipid droplets. In the gravid proglottids, the size of paruterine organ increases and consists of flattened basal and small rounded apical parts separated by constrictions. The fine structure of the organ wall remains the same: sparse nuclei and stacks of flattened cytoplasmic outgrowths but internal invaginations or lumen in the paruterine organ are absent. Completely developed eggs remain localized in the uterus. Based on the comparative morpho-functional analysis of uterine and paruterine organs and uterine capsules in cestodes, we conclude that these non-functioning paruterine organ in O. junlanae is an example of an atavism. We postulate that the life cycle of the parasite, which infects mammals living in wet habitats, where threats of desiccation of parasite ova is reduced, has favoured a reversion to a more ancestral form of uterine development.


Subject(s)
Cestoda/anatomy & histology , Ovum/growth & development , Uterus/anatomy & histology , Uterus/ultrastructure , Animals , Cell Nucleus/physiology , Cestoda/physiology , Cestode Infections/parasitology , Cytoplasm/physiology , Extracellular Matrix , Female , Mice , Muscle Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL