Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Publication year range
1.
Nature ; 600(7888): 295-301, 2021 12.
Article in English | MEDLINE | ID: mdl-34695836

ABSTRACT

SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Transforming Growth Factor beta/immunology , Atlases as Topic , Gene Expression Regulation/immunology , Humans , Immunity, Innate , Influenza, Human/immunology , Killer Cells, Natural/pathology , RNA-Seq , Single-Cell Analysis , Time Factors , Transforming Growth Factor beta/blood , Viral Load/immunology , Virus Replication/immunology
2.
Nature ; 581(7809): 465-469, 2020 05.
Article in English | MEDLINE | ID: mdl-32235945

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.


Subject(s)
Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Coronavirus Infections/immunology , Coronavirus Infections/virology , Hospitalization , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Seroconversion , Virus Replication , Antibodies, Viral/analysis , Antibodies, Viral/immunology , Base Sequence , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Blood/virology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Envelope Proteins , Coronavirus Infections/diagnosis , Feces/chemistry , Feces/virology , Humans , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Immunoglobulin M/analysis , Immunoglobulin M/immunology , Lung/virology , Pandemics , Pharynx/virology , Pneumonia, Viral/diagnosis , Polymorphism, Single Nucleotide/genetics , RNA, Viral/analysis , SARS-CoV-2 , Sputum/virology , Urine/virology , Viral Envelope Proteins/genetics , Viral Load/immunology , Virus Shedding
3.
PLoS Pathog ; 19(9): e1011657, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37747932

ABSTRACT

Inhibitors of bromodomain and extra-terminal proteins (iBETs), including JQ-1, have been suggested as potential prophylactics against SARS-CoV-2 infection. However, molecular mechanisms underlying JQ-1-mediated antiviral activity and its susceptibility to viral subversion remain incompletely understood. Pretreatment of cells with iBETs inhibited infection by SARS-CoV-2 variants and SARS-CoV, but not MERS-CoV. The antiviral activity manifested itself by reduced reporter expression of recombinant viruses, and reduced viral RNA quantities and infectious titers in the culture supernatant. While we confirmed JQ-1-mediated downregulation of expression of angiotensin-converting enzyme 2 (ACE2) and interferon-stimulated genes (ISGs), multi-omics analysis addressing the chromatin accessibility, transcriptome and proteome uncovered induction of an antiviral nuclear factor erythroid 2-related factor 2 (NRF-2)-mediated cytoprotective response as an additional mechanism through which JQ-1 inhibits SARS-CoV-2 replication. Pharmacological inhibition of NRF-2, and knockdown of NRF-2 and its target genes reduced JQ-1-mediated inhibition of SARS-CoV-2 replication. Serial passaging of SARS-CoV-2 in the presence of JQ-1 resulted in predominance of ORF6-deficient variant, which exhibited resistance to JQ-1 and increased sensitivity to exogenously administered type I interferon (IFN-I), suggesting a minimised need for SARS-CoV-2 ORF6-mediated repression of IFN signalling in the presence of JQ-1. Importantly, JQ-1 exhibited a transient antiviral activity when administered prophylactically in human airway bronchial epithelial cells (hBAECs), which was gradually subverted by SARS-CoV-2, and no antiviral activity when administered therapeutically following an established infection. We propose that JQ-1 exerts pleiotropic effects that collectively induce an antiviral state in the host, which is ultimately nullified by SARS-CoV-2 infection, raising questions about the clinical suitability of the iBETs in the context of COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2/metabolism , Interferon Type I/pharmacology , Viral Proteins/metabolism , Antiviral Agents/pharmacology
4.
PLoS Biol ; 20(11): e3001871, 2022 11.
Article in English | MEDLINE | ID: mdl-36383605

ABSTRACT

Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , Virus Shedding , Antibodies, Blocking
6.
Nature ; 557(7705): 418-423, 2018 05.
Article in English | MEDLINE | ID: mdl-29743673

ABSTRACT

Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 × 10-6-1.51 × 10-5 nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages1,2. We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.


Subject(s)
Evolution, Molecular , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Hepatitis B/virology , Phylogeny , Africa , Animals , Asia , Europe , Genotype , Hepatitis B virus/classification , History, Ancient , History, Medieval , Hominidae/virology , Human Migration/history , Humans , Recombination, Genetic
7.
Euro Surveill ; 29(2)2024 Jan.
Article in English | MEDLINE | ID: mdl-38214083

ABSTRACT

Variant BA.2.86 and its descendant, JN.1, of SARS-CoV-2 are rising in incidence across Europe and globally. We isolated recent JN.1, BA.2.86, EG.5, XBB.1.5 and earlier variants. We tested live virus neutralisation of sera taken in September 2023 from vaccinated and exposed healthy persons (n = 39). We found clear neutralisation escape against recent variants but no specific pronounced escape for BA.2.86 or JN.1. Neutralisation escape corresponds to recent variant predominance but may not be causative of the recent upsurge in JN.1 incidence.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Europe/epidemiology , Health Status , Antibodies, Viral , Antibodies, Neutralizing
8.
Emerg Infect Dis ; 29(12): 2524-2527, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37796297

ABSTRACT

Hepatitis A virus (HAV) is a common human pathogen found exclusively in primates. In a molecular and serologic study of 64 alpacas in Bolivia, we detected RNA of distinct HAV in ≈9% of animals and HAV antibodies in ≈64%. Complete-genome analysis suggests a long association of HAV with alpacas.


Subject(s)
Camelids, New World , Hepatitis A virus , Animals , Humans , Hepatitis A virus/genetics , Bolivia/epidemiology , Genotype , RNA
9.
Emerg Infect Dis ; 29(5)2023 05.
Article in English | MEDLINE | ID: mdl-37054986

ABSTRACT

Since late 2020, SARS-CoV-2 variants have regularly emerged with competitive and phenotypic differences from previously circulating strains, sometimes with the potential to escape from immunity produced by prior exposure and infection. The Early Detection group is one of the constituent groups of the US National Institutes of Health National Institute of Allergy and Infectious Diseases SARS-CoV-2 Assessment of Viral Evolution program. The group uses bioinformatic methods to monitor the emergence, spread, and potential phenotypic properties of emerging and circulating strains to identify the most relevant variants for experimental groups within the program to phenotypically characterize. Since April 2021, the group has prioritized variants monthly. Prioritization successes include rapidly identifying most major variants of SARS-CoV-2 and providing experimental groups within the National Institutes of Health program easy access to regularly updated information on the recent evolution and epidemiology of SARS-CoV-2 that can be used to guide phenotypic investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , United States/epidemiology , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , National Institutes of Health (U.S.)
10.
Virol J ; 20(1): 257, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940989

ABSTRACT

BACKGROUND: Intrinsic fitness costs are likely to have guided the selection of lineage-determining mutations during emergence of variants of SARS-CoV-2. Whereas changes in receptor affinity and antibody neutralization have been thoroughly mapped for individual mutations in spike, their influence on intrinsic replicative fitness remains understudied. METHODS: We analyzed mutations in immunodominant spike epitope E484 that became temporarily fixed over the pandemic. We engineered the resulting immune escape mutations E484K, -A, and -Q in recombinant SARS-CoV-2. We characterized viral replication, entry, and competitive fitness with and without immune serum from humans with defined exposure/vaccination history and hamsters monospecifically infected with the E484K variant. We additionally engineered a virus containing the Omicron signature mutations N501Y and Q498R that were predicted to epistatically enhance receptor binding. RESULTS: Multistep growth kinetics in Vero-, Calu-3, and NCI-H1299 were identical between viruses. Synchronized entry experiments based on cold absorption and temperature shift identified only an insignificant trend toward faster entry of the E484K variant. Competitive passage experiments revealed clear replicative fitness differences. In absence of immune serum, E484A and E484Q, but not E484K, were replaced by wildtype (WT) in competition assays. In presence of immune serum, all three mutants outcompeted WT. Decreased E484A fitness levels were over-compensated for by N501Y and Q498R, identifying a putative Omicron founder background that exceeds the intrinsic and effective fitness of WT and matches that of E484K. Critically, the E484A/Q498R/N501Y mutant and E484K have equal fitness also in presence of pre-Omicron vaccinee serum, whereas the fitness gain by E484K is lost in the presence of serum raised against the E484K variant in hamsters. CONCLUSIONS: The emergence of E484A and E484Q prior to widespread population immunity may have been limited by fitness costs. In populations already exposed to the early immune escape epitope E484K, the Omicron founder background may have provided a basis for alternative immune escape evolution via E484A. Studies of major antigenic epitope changes with and without their epistatic context help reconstruct the sequential adjustments of intrinsic fitness versus neutralization escape during the evolution of major SARS-CoV-2 variants in an increasingly immune human population.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Epitopes/genetics , SARS-CoV-2/genetics , Mutation , Immune Sera , Immunodominant Epitopes , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing
11.
Proc Natl Acad Sci U S A ; 117(30): 17977-17983, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32651267

ABSTRACT

Hepatitis delta virus (HDV) is a human hepatitis-causing RNA virus, unrelated to any other taxonomic group of RNA viruses. Its occurrence as a satellite virus of hepatitis B virus (HBV) is a singular case in animal virology for which no consensus evolutionary explanation exists. Here we present a mammalian deltavirus that does not occur in humans, identified in the neotropical rodent species Proechimys semispinosus The rodent deltavirus is highly distinct, showing a common ancestor with a recently described deltavirus in snakes. Reverse genetics based on a tandem minus-strand complementary DNA genome copy under the control of a cytomegalovirus (CMV) promoter confirms autonomous genome replication in transfected cells, with initiation of replication from the upstream genome copy. In contrast to HDV, a large delta antigen is not expressed and the farnesylation motif critical for HBV interaction is absent from a genome region that might correspond to a hypothetical rodent large delta antigen. Correspondingly, there is no evidence for coinfection with an HBV-related hepadnavirus based on virus detection and serology in any deltavirus-positive animal. No other coinfecting viruses were detected by RNA sequencing studies of 120 wild-caught animals that could serve as a potential helper virus. The presence of virus in blood and pronounced detection in reproductively active males suggest horizontal transmission linked to competitive behavior. Our study establishes a nonhuman, mammalian deltavirus that occurs as a horizontally transmitted infection, is potentially cleared by immune response, is not focused in the liver, and possibly does not require helper virus coinfection.


Subject(s)
Coinfection , Hepadnaviridae Infections/veterinary , Hepadnaviridae/physiology , Hepatitis D/veterinary , Hepatitis Delta Virus/physiology , Rodent Diseases/virology , Rodentia/virology , Animals , Cell Line, Tumor , Genome, Viral , Genomics/methods , Hepadnaviridae/classification , Hepatitis Delta Virus/classification , Humans , Phylogeny
12.
J Clin Immunol ; 42(6): 1111-1129, 2022 08.
Article in English | MEDLINE | ID: mdl-35511314

ABSTRACT

PURPOSE: Six to 19% of critically ill COVID-19 patients display circulating auto-antibodies against type I interferons (IFN-AABs). Here, we establish a clinically applicable strategy for early identification of IFN-AAB-positive patients for potential subsequent clinical interventions. METHODS: We analyzed sera of 430 COVID-19 patients from four hospitals for presence of IFN-AABs by ELISA. Binding specificity and neutralizing activity were evaluated via competition assay and virus-infection-based neutralization assay. We defined clinical parameters associated with IFN-AAB positivity. In a subgroup of critically ill patients, we analyzed effects of therapeutic plasma exchange (TPE) on the levels of IFN-AABs, SARS-CoV-2 antibodies and clinical outcome. RESULTS: The prevalence of neutralizing AABs to IFN-α and IFN-ω in COVID-19 patients from all cohorts was 4.2% (18/430), while being undetectable in an uninfected control cohort. Neutralizing IFN-AABs were detectable exclusively in critically affected (max. WHO score 6-8), predominantly male (83%) patients (7.6%, 18/237 for IFN-α-AABs and 4.6%, 11/237 for IFN-ω-AABs in 237 patients with critical COVID-19). IFN-AABs were present early post-symptom onset and at the peak of disease. Fever and oxygen requirement at hospital admission co-presented with neutralizing IFN-AAB positivity. IFN-AABs were associated with lower probability of survival (7.7% versus 80.9% in patients without IFN-AABs). TPE reduced levels of IFN-AABs in three of five patients and may increase survival of IFN-AAB-positive patients compared to those not undergoing TPE. CONCLUSION: IFN-AABs may serve as early biomarker for the development of severe COVID-19. We propose to implement routine screening of hospitalized COVID-19 patients for rapid identification of patients with IFN-AABs who most likely benefit from specific therapies.


Subject(s)
COVID-19 , Interferon Type I , Antibodies, Neutralizing , Autoantibodies , COVID-19/diagnosis , Critical Illness , Female , Humans , Interferon-alpha/therapeutic use , Male , Oxygen , SARS-CoV-2
13.
Mult Scler ; 28(7): 1041-1050, 2022 06.
Article in English | MEDLINE | ID: mdl-35575234

ABSTRACT

BACKGROUND: Optimal management of anti-CD20-treated patients with multiple sclerosis (pwMS) is an important clinical task during the current severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. OBJECTIVES: To characterize humoral and cellular immune responses to SARS-CoV-2 vaccinations/infections in a longitudinal cohort of anti-CD20 treated (n = 175) and anti-CD20 therapy-naïve (n = 41) pwMS. METHODS: Anti-SARS-CoV-2 spike protein immunoglobulin G (IgG) and IgA, virus neutralizing capacity, IgG avidity and SARS-CoV-2-specific T cells were determined. RESULTS: Following two SARS-CoV-2 vaccinations, not only SARS-CoV-2 spike protein IgG and IgA, but also neutralizing capacity and avidity of SARS-CoV-2 IgG were lower in anti-CD20-treated (n = 51) than in anti-CD20 therapy-naïve pwMS (n = 14) and in healthy controls (HC, n = 19). However, in all anti-CD20-treated pwMS vaccinated twice (n = 26) or infected with SARS-CoV-2 (n = 2), in whom SARS-CoV-2-specific T cells were measured, SARS-CoV-2-specific T cells were detectable, at levels similar to those of twice-vaccinated anti-CD20 therapy-naïve pwMS (n = 7) and HC (n = 19). SARS-CoV-2-S1 IgG levels (r = 0.42, p = 0.002), antibody avidity (r = 0.7, p < 0.001), and neutralizing capacity (r = 0.44, p = 0.03) increased with time between anti-CD20 infusion and second vaccination. Based on detection of SARS-CoV-2 antibodies, SARS-CoV-2 infections occurred in 4 out of 175 (2.3%) anti-CD20-treated pwMS, all of whom recovered fully. CONCLUSIONS: These findings should inform treatment decisions and SARS-CoV-2 vaccination management in pwMS.


Subject(s)
COVID-19 , Multiple Sclerosis , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunoglobulin A , Immunoglobulin G/therapeutic use , Multiple Sclerosis/drug therapy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Vaccination
14.
Virol J ; 19(1): 122, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35883083

ABSTRACT

BACKGROUND: Encephalitis is a serious disease of the brain characterized by prodromal and specific neurological symptoms. HIV infections offer opportunistic viruses, such as Varicella-zoster virus (VZV), the chance to cause encephalitis in patients. There is a lack of information on the genetic diversity of VZV in Ghana and other parts of Africa which requires sequencing and characterization studies to address. The active evolution of HIV-1 in West Africa also requires continuous surveillance for the emergence of new genetic forms. CASE PRESENTATION: VZV was detected in the CSF sample of an 11-year-old patient presenting with symptoms of encephalitis by real-time PCR diagnostics. To identify possible unknown aetiological pathogens, next-generation sequencing was performed, and revealed an HIV-1 co-infection. Alignments of concatenated HIV-1 genome fragments in the gag, pol, vif, env and nef regions and a near-complete VZV genome were analyzed by Bayesian inference, and phylogenetic trees were generated. The VZV sequence belongs to clade 5 and the HIV-1 sequence is a member of the CRF02_AG predominant circulating recombinant form in Ghana. CONCLUSIONS: Diagnostic tests for CSF HIV would be useful where possible in patients presenting with encephalitis due to VZV and other opportunistic viruses in Kumasi to shed light on the role of HIV in encephalitis cases in Ghana. This report reaffirms the role of the CRF02_AG circulating recombinant form in HIV infections in Ghana and also gives a preliminary genetic characterization of VZV in Kumasi, Ghana.


Subject(s)
Chickenpox , Coinfection , Encephalitis , HIV Infections , HIV-1 , Herpes Zoster , Bayes Theorem , Child , Ghana , HIV-1/genetics , Herpes Zoster/diagnosis , Herpesvirus 3, Human/genetics , Humans , Phylogeny
15.
Infection ; 50(2): 395-406, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34383260

ABSTRACT

PURPOSE: Rapid antigen-detecting tests (Ag-RDTs) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transform pandemic control. Thus far, sensitivity (≤ 85%) of lateral-flow assays has limited scale-up. Conceivably, microfluidic immunofluorescence Ag-RDTs could increase sensitivity for SARS-CoV-2 detection. METHODS: This multi-centre diagnostic accuracy study investigated performance of the microfluidic immunofluorescence LumiraDx™ assay, enrolling symptomatic and asymptomatic participants with suspected SARS-CoV-2 infection. Participants collected a supervised nasal mid-turbinate (NMT) self-swab for Ag-RDT testing, in addition to a professionally collected nasopharyngeal (NP) swab for routine testing with reverse transcriptase polymerase chain reaction (RT-PCR). Results were compared to calculate sensitivity and specificity. Sub-analyses investigated the results by viral load, symptom presence and duration. An analytical study assessed exclusivity and limit-of-detection (LOD). In addition, we evaluated ease-of-use. RESULTS: The study was conducted between November 2nd 2020 and 4th of December 2020. 761 participants were enrolled, with 486 participants reporting symptoms on testing day. 120 out of 146 RT-PCR positive cases were detected positive by LumiraDx™, resulting in a sensitivity of 82.2% (95% CI 75.2-87.5%). Specificity was 99.3% (CI 98.3-99.7%). Sensitivity was increased in individuals with viral load ≥ 7 log10 SARS-CoV2 RNA copies/ml (93.8%; CI 86.2-97.3%). Testing against common respiratory commensals and pathogens showed no cross-reactivity and LOD was estimated to be 2-56 PFU/mL. The ease-of-use-assessment was favourable for lower throughput settings. CONCLUSION: The LumiraDx™ assay showed excellent analytical sensitivity, exclusivity and clinical specificity with good clinical sensitivity using supervised NMT self-sampling. TRIAL REGISTRATION NUMBER AND REGISTRATION DATE: DRKS00021220 and 01.04.2020.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Pandemics , Point-of-Care Systems , RNA, Viral , Sensitivity and Specificity
16.
Emerg Infect Dis ; 27(8): 2169-2173, 2021 08.
Article in English | MEDLINE | ID: mdl-34102098

ABSTRACT

One week after second vaccinations were administered, an outbreak of B.1.1.7 lineage severe acute respiratory syndrome coronavirus 2 infections occurred in a long-term care facility in Berlin, Germany, affecting 16/20 vaccinated and 4/4 unvaccinated residents. Despite considerable viral loads, vaccinated residents experienced mild symptoms and faster time to negative test results.


Subject(s)
COVID-19 , SARS-CoV-2 , Berlin , Disease Outbreaks , Germany/epidemiology , Humans , Long-Term Care , Vaccination
17.
Emerg Infect Dis ; 27(8): 2174-2178, 2021 08.
Article in English | MEDLINE | ID: mdl-34102097

ABSTRACT

We detected delayed and reduced antibody and T-cell responses after BNT162b2 vaccination in 71 elderly persons (median age 81 years) compared with 123 healthcare workers (median age 34 years) in Germany. These data emphasize that nonpharmaceutical interventions for coronavirus disease remain crucial and that additional immunizations for the elderly might become necessary.


Subject(s)
COVID-19 , Adult , Aged , Aged, 80 and over , BNT162 Vaccine , COVID-19 Vaccines , Germany/epidemiology , Humans , SARS-CoV-2 , T-Lymphocytes , Vaccination
18.
PLoS Pathog ; 15(12): e1008224, 2019 12.
Article in English | MEDLINE | ID: mdl-31830128

ABSTRACT

The spectrum of viruses in insects is important for subjects as diverse as public health, veterinary medicine, food production, and biodiversity conservation. The traditional interest in vector-borne diseases of humans and livestock has drawn the attention of virus studies to hematophagous insect species. However, these represent only a tiny fraction of the broad diversity of Hexapoda, the most speciose group of animals. Here, we systematically probed the diversity of negative strand RNA viruses in the largest and most representative collection of insect transcriptomes from samples representing all 34 extant orders of Hexapoda and 3 orders of Entognatha, as well as outgroups, altogether representing 1243 species. Based on profile hidden Markov models we detected 488 viral RNA-directed RNA polymerase (RdRp) sequences with similarity to negative strand RNA viruses. These were identified in members of 324 arthropod species. Selection for length, quality, and uniqueness left 234 sequences for analyses, showing similarity to genomes of viruses classified in Bunyavirales (n = 86), Articulavirales (n = 54), and several orders within Haploviricotina (n = 94). Coding-complete genomes or nearly-complete subgenomic assemblies were obtained in 61 cases. Based on phylogenetic topology and the availability of coding-complete genomes we estimate that at least 20 novel viral genera in seven families need to be defined, only two of them monospecific. Seven additional viral clades emerge when adding sequences from the present study to formerly monospecific lineages, potentially requiring up to seven additional genera. One long sequence may indicate a novel family. For segmented viruses, cophylogenies between genome segments were generally improved by the inclusion of viruses from the present study, suggesting that in silico misassembly of segmented genomes is rare or absent. Contrary to previous assessments, significant virus-host codivergence was identified in major phylogenetic lineages based on two different approaches of codivergence analysis in a hypotheses testing framework. In spite of these additions to the known spectrum of viruses in insects, we caution that basing taxonomic decisions on genome information alone is challenging due to technical uncertainties, such as the inability to prove integrity of complete genome assemblies of segmented viruses.


Subject(s)
Insecta/virology , RNA Virus Infections/virology , RNA Viruses , Animals
19.
Biomarkers ; 26(3): 213-220, 2021 May.
Article in English | MEDLINE | ID: mdl-33455451

ABSTRACT

BACKGROUND: In the emergency department (ED) setting, rapid testing for SARS-CoV-2 is likely associated with advantages to patients and healthcare workers, for example, enabling early but rationale use of limited isolation resources. Most recently, several SARS-CoV-2 rapid point-of-care antigen tests (AGTEST) became available. There is a growing need for data regarding their clinical utility and performance in the diagnosis of SARS-CoV-2 infection in the real life setting EDs. METHODS: We implemented AGTEST (here: Roche/SD Biosensor) in all four adult and the one paediatric EDs at Charité - Universitätsmedizin Berlin in our diagnostic testing strategy. Test indication was limited to symptomatic suspected COVID-19 patients. Detailed written instructions on who to test were distributed and testing personnel were trained in proper specimen collection and handling. In each suspected COVID-19 patient, two sequential deep oro-nasopharyngeal swabs were obtained for viral tests. The first swab was collected for nucleic acid testing through SARS-CoV-2 real-time reverse transcriptase (rt)-PCR diagnostic panel (PCRTEST) in the central laboratory. The second swab was collected to perform the AGTEST. Analysis of routine data was prospectively planned and data were retrieved from the medical records after the inclusion period in the adult or paediatric ED. Diagnostic performance was calculated using the PCRTEST as reference standard. False negative and false positive AGTEST results were analysed individually and compared with viral concentrations derived from the calibrated PCRTEST. RESULTS: We included n = 483 patients including n = 202 from the paediatric ED. N = 10 patients had to be excluded due to missing data and finally n = 473 patients were analysed. In the adult cohort, the sensitivity of the AGTEST was 75.3 (95%CI: 65.8/83.4)% and the specificity was 100 (95%CI: 98.4/100)% with a SARS-CoV-2 prevalence of 32.8%; the positive predictive value was 100 (95%CI: 95.7/100)% and the negative predictive value 89.2 (95%CI: 84.5/93.9)%. In the paediatric cohort, the sensitivity was 72.0 (95%CI: 53.3/86.7)%, the specificity was 99.4 (95%CI:97.3/99.9)% with a prevalence of 12.4%; the positive predictive value was 94.7 (95%CI: 78.3/99.7)% and the negative predictive value was 96.2 (95%CI:92.7/98.3)%. Thus, n = 22 adult and n = 7 paediatric patients showed false negative AGTEST results and only one false positive AGTEST occurred, in the paediatric cohort. Calculated viral concentrations from the rt-PCR lay between 3.16 and 9.51 log10 RNA copies/mL buffer. All false negative patients in the adult ED cohort, who had confirmed symptom onset at least seven days earlier had less than 5 × 105 RNA copies/mL buffer. CONCLUSIONS: We conclude that the use of AGTEST among symptomatic patients in the emergency setting is useful for the early identification of COVID-19, but patients who test negative require confirmation by PCRTEST and must stay isolated until this result becomes available. Adult patients with a false negative AGTEST and symptom onset at least one week earlier have typically a low SARS-CoV-2 RNA concentration and are likely no longer infectious.


Subject(s)
Antigens, Viral/blood , COVID-19/diagnosis , Emergency Service, Hospital , Immunoassay/methods , SARS-CoV-2/immunology , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification
20.
Infection ; 49(4): 703-714, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33890243

ABSTRACT

PURPOSE: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. METHODS: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. RESULTS: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. CONCLUSIONS: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/physiology , COVID-19/therapy , Cohort Studies , Germany/epidemiology , Hospitalization , Humans , Hypertension/complications , Kinetics , Prospective Studies , Respiration, Artificial , Risk Factors , Tertiary Care Centers , Time Factors , Viral Load , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL