ABSTRACT
Retaining trees during harvesting to conserve biodiversity is becoming increasingly common in forestry. To assess, select and monitor these habitat trees, ecologists and practitioners often use Tree-related Microhabitats (TreMs), which are assumed to represent the abundance and diversity of environmental resources for a wide range of forest-dwelling taxa. However, the relationship between TreMs and forest organisms is not fully understood. In this context, we attempted to identify and quantify the links between TreMs and three groups of forest organisms: insects, bats, and birds. Specifically, we tested whether species abundance is influenced by TreM abundance, either as direct predictor or as mediator of environmental predictors. We collected data in 86 temperate, 1-ha mixed forest plots and employed a hierarchical generalized mixed model to assess the influence of seven environmental predictors (aspect, number and height of standing dead trees, cover of herb and shrub layer, volume of lying deadwood, and terrain ruggedness index (TRI)) on the abundance of TreMs (15 groups) on potential habitat trees, insects (10 orders), bats (5 acoustic groups) and birds (29 species) as a function of seven environmental predictors: aspect, number and height of standing dead trees, cover of herb and shrub layer, volume of lying deadwood, and terrain ruggedness index (TRI). This allowed us to generate a correlation matrix with potential links between abundances of TreMs and co-occurring forest organisms. These correlations and the environmental predictors were tested in a structural equation model (SEM) to disentangle and quantify the effects of the environment from direct effects of TreMs on forest organisms. Four TreM groups showed correlations > |0.30| with forest organisms, in particular with insects and bats. Rot holes and concavities were directly linked with three insect groups and two bat groups. Their effect was smaller than effects of environmental predictors, except for the pairs "rot holes - Sternorrhyncha" and "rot holes - bats" of the Pipistrellus group. In addition, TreMs had indirect effects on forest organisms through mediating the effects of environmental predictors. We found significant associations between two out of fifteen TreM groups and five out of 44 forest organism groups. These results indicate that TreM abundance on potential habitat trees is not suited as a general indicator of the species abundance across broad taxonomic groups but possibly for specific target groups with proven links.
Subject(s)
Birds , Trees , Animals , Biodiversity , Ecosystem , Forestry , InsectaABSTRACT
Managed forests are a key component of strategies aimed at tackling the climate and biodiversity crises. Tapping this potential requires a better understanding of the complex, simultaneous effects of forest management on biodiversity, carbon stocks and productivity. Here, we used data of 135 one-hectare plots from southwestern Germany to disentangle the relative influence of gradients of management intensity, carbon stocks and forest productivity on different components of forest biodiversity (birds, bats, insects, plants) and tree-related microhabitats. We tested whether the composition of taxonomic groups varies gradually or abruptly along these gradients. The richness of taxonomic groups was rather insensitive to management intensity, carbon stocks and forest productivity. Despite the low explanatory power of the main predictor variables, forest management had the greatest relative influence on richness of insects and tree-related microhabitats, while carbon stocks influenced richness of bats, birds, vascular plants and pooled taxa. Species composition changed relatively abruptly along the management intensity gradient, while changes along carbon and productivity gradients were more gradual. We conclude that moderate increases in forest management intensity and carbon stocks, within the range of variation observed in our study system, might be compatible with biodiversity and climate mitigation objectives in managed forests.
Subject(s)
Biodiversity , Carbon/metabolism , Forests , Animals , Birds/physiology , Carbon/chemistry , Insecta/metabolism , Insecta/physiology , Plants/metabolismABSTRACT
Retention forestry implies that biological legacies like dead and living trees are deliberately selected and retained beyond harvesting cycles to benefit biodiversity and ecosystem functioning. This model has been applied for several decades in even-aged, clearcutting (CC) systems but less so in uneven-aged, continuous-cover forestry (CCF). We provide an overview of retention in CCF in temperate regions of Europe, currently largely focused on habitat trees and dead wood. The relevance of current meta-analyses and many other studies on retention in CC is limited since they emphasize larger patches in open surroundings. Therefore, we reflect here on the ecological foundations and socio-economic frameworks of retention approaches in CCF, and highlight several areas with development potential for the future. Conclusions from this perspective paper, based on both research and current practice on several continents, although highlighting Europe, are also relevant to other temperate regions of the world using continuous-cover forest management approaches.