Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Mol Biol Evol ; 40(7)2023 07 05.
Article in English | MEDLINE | ID: mdl-37463421

ABSTRACT

For over 10,000 years, Andeans have resided at high altitude where the partial pressure of oxygen challenges human survival. Recent studies have provided evidence for positive selection acting in Andeans on the HIF2A (also known as EPAS1) locus, which encodes for a central transcription factor of the hypoxia-inducible factor pathway. However, the precise mechanism by which this allele might lead to altitude-adaptive phenotypes, if any, is unknown. By analyzing whole genome sequencing data from 46 high-coverage Peruvian Andean genomes, we confirm evidence for positive selection acting on HIF2A and a unique pattern of variation surrounding the Andean-specific single nucleotide variant (SNV), rs570553380, which encodes for an H194R amino acid substitution in HIF-2α. Genotyping the Andean-associated SNV rs570553380 in a group of 299 Peruvian Andeans from Cerro de Pasco, Peru (4,338 m), reveals a positive association with increased fraction of exhaled nitric oxide, a marker of nitric oxide biosynthesis. In vitro assays show that the H194R mutation impairs binding of HIF-2α to its heterodimeric partner, aryl hydrocarbon receptor nuclear translocator. A knockin mouse model bearing the H194R mutation in the Hif2a gene displays decreased levels of hypoxia-induced pulmonary Endothelin-1 transcripts and protection against hypoxia-induced pulmonary hypertension. We conclude the Andean H194R HIF2A allele is a hypomorphic (partial loss of function) allele.


Subject(s)
Altitude , Nitric Oxide , Animals , Humans , Mice , Adaptation, Physiological/genetics , Alleles , Basic Helix-Loop-Helix Transcription Factors/genetics , Hypoxia/genetics
2.
Exp Physiol ; 109(4): 535-548, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38180087

ABSTRACT

The human spleen contracts in response to stress-induced catecholamine secretion, resulting in a temporary rise in haemoglobin concentration ([Hb]). Recent findings highlighted enhanced splenic response to exercise at high altitude in Sherpa, possibly due to a blunted splenic response to hypoxia. To explore the potential blunted splenic contraction in Sherpas at high altitude, we examined changes in spleen volume during hyperoxic breathing, comparing acclimatized Sherpa with acclimatized individuals of lowland ancestry. Our study included 14 non-Sherpa (7 female) residing at altitude for a mean continuous duration of 3 months and 46 Sherpa (24 female) with an average of 4 years altitude exposure. Participants underwent a hyperoxic breathing test at altitude (4300 m; barrometric pressure = âˆ¼430 torr; P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$  = âˆ¼90 torr). Throughout the test, we measured spleen volume using ultrasonography and monitored oxygen saturation ( S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). During rest, Sherpa exhibited larger spleens (226 ± 70 mL) compared to non-Sherpa (165 ± 34 mL; P < 0.001; effect size (ES) = 0.95, 95% CI: 0.3-1.6). In response to hyperoxia, non-Sherpa demonstrated 22 ± 12% increase in spleen size (35 ± 17 mL, 95% CI: 20.7-48.9; P < 0.001; ES = 1.8, 95% CI: 0.93-2.66), while spleen size remained unchanged in Sherpa (-2 ± 13 mL, 95% CI: -2.4 to 7.3; P = 0.640; ES = 0.18, 95% CI: -0.10 to 0.47). Our findings suggest that Sherpa and non-Sherpas of lowland ancestry exhibit distinct variations in spleen volume during hyperoxia at high altitude, potentially indicating two distinct splenic functions. In Sherpa, this phenomenon may signify a diminished splenic response to altitude-related hypoxia at rest, potentially contributing to enhanced splenic contractions during physical stress. Conversely, non-Sherpa experienced a transient increase in spleen size during hyperoxia, indicating an active tonic contraction, which may influence early altitude acclimatization in lowlanders by raising [Hb].


Subject(s)
Altitude Sickness , Hyperoxia , Humans , Female , Altitude , Spleen , Acclimatization/physiology , Hypoxia
3.
Am J Hum Biol ; : e24090, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741522

ABSTRACT

OBJECTIVES: The Sherpa ethnic group living at altitude in Nepal may have experienced natural selection in response to chronic hypoxia. We have previously shown that Sherpa in Kathmandu (1400 m) possess larger spleens and a greater apnea-induced splenic contraction compared to lowland Nepalis. This may be significant for exercise capacity at altitude as the human spleen responds to stress-induced catecholamine secretion by an immediate contraction, which results in transiently elevated hemoglobin concentration ([Hb]). METHODS: To investigate splenic contraction in response to exercise at high-altitude (4300 m; Pb = ~450 Torr), we recruited 63 acclimatized Sherpa (29F) and 14 Nepali non-Sherpa (7F). Spleen volume was measured before and after maximal exercise on a cycle ergometer by ultrasonography, along with [Hb] and oxygen saturation (SpO2). RESULTS: Resting spleen volume was larger in the Sherpa compared with Nepali non-Sherpa (237 ± 62 vs. 165 ± 34 mL, p < .001), as was the exercise-induced splenic contraction (Δspleen volume, 91 ± 40 vs. 38 ± 32 mL, p < .001). From rest to exercise, [Hb] increased (1.2 to 1.4 g.dl-1), SpO2 decreased (~9%) and calculated arterial oxygen content (CaO2) remained stable, but there were no significant differences between groups. In Sherpa, both resting spleen volume and the Δspleen volume were modest positive predictors of the change (Δ) in [Hb] and CaO2 with exercise (p-values from .026 to .037 and R2 values from 0.059 to 0.067 for the predictor variable). CONCLUSIONS: Larger spleens and greater splenic contraction may be an adaptive characteristic of Nepali Sherpa to increase CaO2 during exercise at altitude, but the direct link between spleen size/function and hypoxia tolerance remains unclear.

SELECTION OF CITATIONS
SEARCH DETAIL