Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 14(1): 7147, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38532119

ABSTRACT

E-health has become a top priority for healthcare organizations focused on advancing healthcare services. Thus, medical organizations have been widely adopting cloud services, resulting in the effective storage of sensitive data. To prevent privacy and security issues associated with the data, attribute-based encryption (ABE) has been a popular choice for encrypting private data. Likewise, the attribute-based access control (ABAC) technique has been widely adopted for controlling data access. Researchers have proposed electronic health record (EHR) systems using ABE techniques like ciphertext policy attribute-based encryption (CP-ABE), key policy attribute-based encryption (KP-ABE), and multi authority attribute-based encryption (MA-ABE). However, there is a lack of rigorous comparison among the various ABE schemes used in healthcare systems. To better understand the usability of ABE techniques in medical systems, we performed a comprehensive review and evaluation of the three popular ABE techniques by developing EHR systems using knowledge graphs with the same data but different encryption mechanisms. We have used the MIMIC-III dataset with varying record sizes for this study. This paper can help healthcare organizations or researchers using ABE in their systems to comprehend the correct usage scenario and the prospect of ABE deployment in the most recent technological evolution.


Subject(s)
Electronic Health Records , Information Storage and Retrieval , Algorithms , Computer Security , Cloud Computing , Delivery of Health Care
2.
JMIR AI ; 2: e52888, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38875540

ABSTRACT

BACKGROUND: Artificial intelligence (AI) and machine learning (ML) technology design and development continues to be rapid, despite major limitations in its current form as a practice and discipline to address all sociohumanitarian issues and complexities. From these limitations emerges an imperative to strengthen AI and ML literacy in underserved communities and build a more diverse AI and ML design and development workforce engaged in health research. OBJECTIVE: AI and ML has the potential to account for and assess a variety of factors that contribute to health and disease and to improve prevention, diagnosis, and therapy. Here, we describe recent activities within the Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity (AIM-AHEAD) Ethics and Equity Workgroup (EEWG) that led to the development of deliverables that will help put ethics and fairness at the forefront of AI and ML applications to build equity in biomedical research, education, and health care. METHODS: The AIM-AHEAD EEWG was created in 2021 with 3 cochairs and 51 members in year 1 and 2 cochairs and ~40 members in year 2. Members in both years included AIM-AHEAD principal investigators, coinvestigators, leadership fellows, and research fellows. The EEWG used a modified Delphi approach using polling, ranking, and other exercises to facilitate discussions around tangible steps, key terms, and definitions needed to ensure that ethics and fairness are at the forefront of AI and ML applications to build equity in biomedical research, education, and health care. RESULTS: The EEWG developed a set of ethics and equity principles, a glossary, and an interview guide. The ethics and equity principles comprise 5 core principles, each with subparts, which articulate best practices for working with stakeholders from historically and presently underrepresented communities. The glossary contains 12 terms and definitions, with particular emphasis on optimal development, refinement, and implementation of AI and ML in health equity research. To accompany the glossary, the EEWG developed a concept relationship diagram that describes the logical flow of and relationship between the definitional concepts. Lastly, the interview guide provides questions that can be used or adapted to garner stakeholder and community perspectives on the principles and glossary. CONCLUSIONS: Ongoing engagement is needed around our principles and glossary to identify and predict potential limitations in their uses in AI and ML research settings, especially for institutions with limited resources. This requires time, careful consideration, and honest discussions around what classifies an engagement incentive as meaningful to support and sustain their full engagement. By slowing down to meet historically and presently underresourced institutions and communities where they are and where they are capable of engaging and competing, there is higher potential to achieve needed diversity, ethics, and equity in AI and ML implementation in health research.

SELECTION OF CITATIONS
SEARCH DETAIL