Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L288-L300, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33296276

ABSTRACT

Cystic fibrosis (CF) arises from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in progressive and life-limiting respiratory disease. R751L is a rare CFTR mutation that is poorly characterized. Our aims were to describe the clinical and molecular phenotypes associated with R751L. Relevant clinical data were collected from three heterozygote individuals harboring R751L (2 patients with G551D/R751L and 1 with F508del/R751L). Assessment of R751L-CFTR function was made in primary human bronchial epithelial cultures (HBEs) and Xenopus oocytes. Molecular properties of R751L-CFTR were investigated in the presence of known CFTR modulators. Although sweat chloride was elevated in all three patients, the clinical phenotype associated with R751L was mild. Chloride secretion in F508del/R751L HBEs was reduced compared with non-CF HBEs and associated with a reduction in sodium absorption by the epithelial sodium channel (ENaC). However, R751L-CFTR function in Xenopus oocytes, together with folding and cell surface transport of R751L-CFTR, was not different from wild-type CFTR. Overall, R751L-CFTR was associated with reduced sodium chloride absorption but had functional properties similar to wild-type CFTR. This is the first report of R751L-CFTR that combines clinical phenotype with characterization of functional and biological properties of the mutant channel. Our work will build upon existing knowledge of mutations within this region of CFTR and, importantly, inform approaches for clinical management. Elevated sweat chloride and reduced chloride secretion in HBEs may be due to alternative non-CFTR factors, which require further investigation.


Subject(s)
Bronchi , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Epithelial Cells , Mutation, Missense , Sodium Chloride/metabolism , Amino Acid Substitution , Animals , Bronchi/metabolism , Bronchi/pathology , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Male , Xenopus laevis
2.
FASEB J ; 33(2): 1860-1872, 2019 02.
Article in English | MEDLINE | ID: mdl-30207797

ABSTRACT

Tumor microvesicles are a peculiar type of extracellular vesicles that circulate in the blood of patients with metastatic cancer. The itineraries and immune cell interactions of tumor microvesicles during the intravascular and extravascular stages of metastasis are largely unknown. We found that the lipid receptor CD36 is a major mediator of the engulfment of pancreatic tumor microvesicles by myeloid immune cells in vitro and critically samples circulating tumor microvesicles by resident liver macrophages in mice in vivo. Direct nanoscopic imaging of individual tumor microvesicles shows that the microvesicles rapidly decay during engulfment whereby their cargo is targeted concomitantly to the plasma membrane and the cytoplasm excluding lysosomal compartments. CD36 also promotes internalization of blood cell (nontumor) microvesicles, which involves endolysosomal pathways. A portion of tumor microvesicles circulating in the liver microcirculation traverses the vessel wall in a CD36-dependent way. Extravasated microvesicles colonize distinct perivascular Ly6C- macrophages for at least 2 wk. Thus, the microvesicles are increasingly integrated into CD36-induced premetastatic cell clusters and enhance development of liver metastasis. Hence, promotion of metastasis by pancreatic tumor microvesicles is associated with CD36-regulated immune cell invasion and extravasation of microvesicles and persistent infiltration of specific tissue macrophages by microvesicle cargo.-Pfeiler, S., Thakur, M., Grünauer, P., Megens, R. T. A., Joshi, U., Coletti, R., Samara, V., Müller-Stoy, G., Ishikawa-Ankerhold, H., Stark, K., Klingl, A., Fröhlich, T., Arnold, G. J., Wörmann, S., Bruns, C. J., Algül, H., Weber, C., Massberg, S., Engelmann, B. CD36-triggered cell invasion and persistent tissue colonization by tumor microvesicles during metastasis.


Subject(s)
CD36 Antigens/immunology , Cell-Derived Microparticles/immunology , Lysosomes/immunology , Macrophages/immunology , Pancreatic Neoplasms/immunology , Cell-Derived Microparticles/pathology , Humans , Lysosomes/pathology , Macrophages/pathology , Neoplasm Invasiveness , Neoplasm Metastasis , Pancreatic Neoplasms/pathology , THP-1 Cells
3.
Arterioscler Thromb Vasc Biol ; 38(4): 772-786, 2018 04.
Article in English | MEDLINE | ID: mdl-29419408

ABSTRACT

OBJECTIVE: Cancer patients are at high risk of developing deep venous thrombosis (DVT) and venous thromboembolism, a leading cause of mortality in this population. However, it is largely unclear how malignant tumors drive the prothrombotic cascade culminating in DVT. APPROACH AND RESULTS: Here, we addressed the pathophysiology of malignant DVT compared with nonmalignant DVT and focused on the role of tumor microvesicles as potential targets to prevent cancer-associated DVT. We show that microvesicles released by pancreatic adenocarcinoma cells (pancreatic tumor-derived microvesicles [pcMV]) boost thrombus formation in a model of flow restriction of the mouse vena cava. This depends on the synergistic activation of coagulation by pcMV and host tissue factor. Unlike nonmalignant DVT, which is initiated and propagated by innate immune cells, thrombosis triggered by pcMV was largely independent of myeloid leukocytes or platelets. Instead, we identified externalization of the phospholipid phosphatidylethanolamine as a major mechanism controlling the prothrombotic activity of pcMV. Disrupting phosphatidylethanolamine-dependent activation of factor X suppressed pcMV-induced DVT without causing changes in hemostasis. CONCLUSIONS: Together, we show here that the pathophysiology of pcMV-associated experimental DVT differs markedly from innate immune cell-promoted nonmalignant DVT and is therefore amenable to distinct antithrombotic strategies. Targeting phosphatidylethanolamine on tumor microvesicles could be a new strategy for prevention of cancer-associated DVT without causing bleeding complications.


Subject(s)
Adenocarcinoma/complications , Blood Coagulation , Cell-Derived Microparticles/metabolism , Pancreatic Neoplasms/complications , Vena Cava, Inferior/metabolism , Venous Thrombosis/etiology , Adenocarcinoma/blood , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Animals , Bacteriocins/pharmacology , Blood Coagulation/drug effects , Cell Line, Tumor , Cell-Derived Microparticles/drug effects , Cell-Derived Microparticles/pathology , Disease Models, Animal , Drug Design , Factor Xa/metabolism , Fibrinolytic Agents/pharmacology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Targeted Therapy , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Peptides/pharmacology , Phosphatidylethanolamines/antagonists & inhibitors , Phosphatidylethanolamines/blood , Signal Transduction , Thromboplastin/metabolism , Vena Cava, Inferior/drug effects , Vena Cava, Inferior/pathology , Venous Thrombosis/blood , Venous Thrombosis/pathology , Venous Thrombosis/prevention & control
4.
Trends Cell Biol ; 28(10): 761-763, 2018 10.
Article in English | MEDLINE | ID: mdl-30185380

ABSTRACT

Lysosome function and position in the cytoplasm depends on the BORCS machinery, which tethers lysosomes to the kinesin microtubule motor. A recent paper of Snouwaert et al. in Cell Reports characterizes a mouse with a spontaneous mutation in the Borcs7 subunit, which causes axonal dystrophy and impaired motor function.


Subject(s)
Kinesins/genetics , Lysosomes , Animals , Cytosol , Mice , Microtubules , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL