Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Trends Immunol ; 45(3): 188-197, 2024 03.
Article in English | MEDLINE | ID: mdl-38453577

ABSTRACT

Molecular studies in bats have led to the discovery of antiviral adaptations that may explain how some bat species have evolved enhanced immune tolerance towards viruses. Accumulating data suggest that some bat species have also evolved remarkable features of longevity and low rates of cancer. Furthermore, recent research strongly suggests that discovering immune adaptations in bat models can be translated to develop immune modulators and recognize alternate therapeutic strategies for diseases affecting humans. We posit that research in bat immunology will lead to discoveries that can potentially be translated to improve health outcomes in humans.


Subject(s)
Chiroptera , Viruses , Animals , Humans
2.
EMBO Rep ; 24(12): e57424, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37860832

ABSTRACT

The mechanisms utilized by different flaviviruses to evade antiviral functions of interferons are varied and incompletely understood. Using virological approaches, biochemical assays, and mass spectrometry analyses, we report here that the NS5 protein of tick-borne encephalitis virus (TBEV) and Louping Ill virus (LIV), two related tick-borne flaviviruses, antagonize JAK-STAT signaling through interactions with the tyrosine kinase 2 (TYK2). Co-immunoprecipitation (co-IP) experiments, yeast gap-repair assays, computational protein-protein docking and functional studies identify a stretch of 10 residues of the RNA dependent RNA polymerase domain of tick-borne flavivirus NS5, but not mosquito-borne NS5, that is critical for interactions with the TYK2 kinase domain. Additional co-IP assays performed with several TYK2 orthologs reveal that the interaction is conserved across mammalian species. In vitro kinase assays show that TBEV and LIV NS5 reduce the catalytic activity of TYK2. Our results thus illustrate a novel mechanism by which viruses suppress the interferon response.


Subject(s)
Encephalitis Viruses, Tick-Borne , TYK2 Kinase , Ticks , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/metabolism , Interferons/metabolism , Ticks/metabolism , TYK2 Kinase/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Humans
3.
Cell ; 141(5): 754-6, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20510923

ABSTRACT

As part of their life cycle some single-stranded RNA viruses remodel host cytoplasmic membranes into specialized organelles. In this issue, Hsu et al. (2010) demonstrate how the viruses selectively co-opt host machinery to make this unique organelle, which has a lipid composition favorable to viral replication.

4.
Trends Immunol ; 42(12): 1069-1072, 2021 12.
Article in English | MEDLINE | ID: mdl-34742657

ABSTRACT

Interferons are our first line of defense against invading viruses. However, viruses encode effector proteins that can modulate human interferon responses. In this forum article, we highlight important discoveries and discuss outstanding questions that will enable us to better understand the nuances of this evolutionary battle between interferons and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , Humans , Immunity, Innate , Interferons
5.
EMBO Rep ; 23(2): e54341, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34914162

ABSTRACT

SARS-CoV-2 infection results in impaired interferon response in patients with severe COVID-19. However, how SARS-CoV-2 interferes with host immune responses is incompletely understood. Here, we sequence small RNAs from SARS-CoV-2-infected human cells and identify a microRNA (miRNA) derived from a recently evolved region of the viral genome. We show that the virus-derived miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer, which are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3'UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 can potentially employ a virus-derived miRNA to hijack the host miRNA machinery, which could help to evade the interferon-mediated immune response.


Subject(s)
COVID-19 , MicroRNAs , RNA, Viral/genetics , SARS-CoV-2/genetics , 3' Untranslated Regions , COVID-19/immunology , Humans , Immunity , MicroRNAs/genetics
6.
EMBO Rep ; 23(11): e54061, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36161446

ABSTRACT

Genome-wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV-1. Depletion of endogenous DDX42 increases HIV-1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV-1 infection, whereas expression of a dominant-negative mutant increases infection. Importantly, DDX42 also restricts LINE-1 retrotransposition and infection with other retroviruses and positive-strand RNA viruses, including CHIKV and SARS-CoV-2. However, DDX42 does not impact the replication of several negative-strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA-seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross-linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV-1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.


Subject(s)
DEAD-box RNA Helicases , HIV-1 , Positive-Strand RNA Viruses , Virus Replication , Humans , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , HIV-1/physiology , Positive-Strand RNA Viruses/physiology , SARS-CoV-2/physiology
7.
J Gen Virol ; 104(11)2023 11.
Article in English | MEDLINE | ID: mdl-37909282

ABSTRACT

Enterovirus 71 (EV-A71) is a major public health problem, causing a range of illnesses from hand-foot-and-mouth disease to severe neurological manifestations. EV-A71 strains have been phylogenetically classified into eight genogroups (A to H), based on their capsid-coding genomic region. Genogroups B and C have caused large outbreaks worldwide and represent the two canonical circulating EV-A71 subtypes. Little is known about the antigenic diversity of new genogroups as compared to the canonical ones. Here, we compared the antigenic features of EV-A71 strains that belong to the canonical B and C genogroups and to genogroups E and F, which circulate in Africa. Analysis of the peptide sequences of EV-A71 strains belonging to different genogroups revealed a high level of conservation of the capsid residues involved in known linear and conformational neutralization antigenic sites. Using a published crystal structure of the EV-A71 capsid as a model, we found that most of the residues that are seemingly specific to some genogroups were mapped outside known antigenic sites or external loops. These observations suggest a cross-neutralization activity of anti-genogroup B or C antibodies against strains of genogroups E and F. Neutralization assays were performed with diverse rabbit and mouse anti-EV-A71 sera, anti-EV-A71 human standards and a monoclonal neutralizing antibody. All the batches of antibodies that were tested successfully neutralized all available isolates, indicating an overall broad cross-neutralization between the canonical genogroups B and C and genogroups E and F. A panel constituted of more than 80 individual human serum samples from Cambodia with neutralizing antibodies against EV-A71 subgenogroup C4 showed quite similar cross-neutralization activities between isolates of genogroups C4, E and F. Our results thus indicate that the genetic drift underlying the separation of EV-A71 strains into genogroups A, B, C, E and F does not correlate with the emergence of antigenically distinct variants.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Humans , Mice , Animals , Rabbits , Enterovirus A, Human/genetics , Antigens, Viral/genetics , Capsid Proteins/genetics , Genotype , Antibodies, Monoclonal
8.
J Virol ; 96(14): e0060822, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35862713

ABSTRACT

Bats are natural reservoirs of numerous coronaviruses, including the potential ancestor of SARS-CoV-2. Knowledge concerning the interaction between coronaviruses and bat cells is sparse. We investigated the ability of primary cells from Rhinolophus and Myotis species, as well as of established and novel cell lines from Myotis myotis, Eptesicus serotinus, Tadarida brasiliensis, and Nyctalus noctula, to support SARS-CoV-2 replication. None of these cells were permissive to infection, not even the ones expressing detectable levels of angiotensin-converting enzyme 2 (ACE2), which serves as the viral receptor in many mammalian species. The resistance to infection was overcome by expression of human ACE2 (hACE2) in three cell lines, suggesting that the restriction to viral replication was due to a low expression of bat ACE2 (bACE2) or the absence of bACE2 binding in these cells. Infectious virions were produced but not released from hACE2-transduced M. myotis brain cells. E. serotinus brain cells and M. myotis nasal epithelial cells expressing hACE2 efficiently controlled viral replication, which correlated with a potent interferon response. Our data highlight the existence of species-specific and cell-specific molecular barriers to viral replication in bat cells. These novel chiropteran cellular models are valuable tools to investigate the evolutionary relationships between bats and coronaviruses. IMPORTANCE Bats are host ancestors of several viruses that cause serious disease in humans, as illustrated by the ongoing SARS-CoV-2 pandemic. Progress in investigating bat-virus interactions has been hampered by a limited number of available bat cellular models. We have generated primary cells and cell lines from several bat species that are relevant for coronavirus research. The various permissivities of the cells to SARS-CoV-2 infection offered the opportunity to uncover some species-specific molecular restrictions to viral replication. All bat cells exhibited a potent entry-dependent restriction. Once this block was overcome by overexpression of human ACE2, which serves at the viral receptor, two bat cell lines controlled well viral replication, which correlated with the inability of the virus to counteract antiviral responses. Other cells potently inhibited viral release. Our novel bat cellular models contribute to a better understanding of the molecular interplays between bat cells and viruses.


Subject(s)
Chiroptera , SARS-CoV-2 , Virus Replication , Angiotensin-Converting Enzyme 2/genetics , Animals , Chiroptera/virology , Humans , Receptors, Virus/metabolism , SARS-CoV-2/physiology , Species Specificity , Spike Glycoprotein, Coronavirus/metabolism
9.
Virologie (Montrouge) ; 27(3): 22-34, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37476986

ABSTRACT

The genus Enterovirus (family Picornaviridae) contains numerous viruses, most of which have been identified in humans. Among them, the three serotypes of poliovirus, coxsackieviruses A and B, echoviruses, rhinoviruses and other enteroviruses (EVs) responsible in humans for a wide spectrum of clinical manifestations. There are also 60 identified EVs in different mammals. Some have been found in both humans and animals, demonstrating the possibility of zoonotic transmission of certain EVs. Compared to human EVs, genetic and epidemiological data about animal EVs are scarce. However, the detection of EVs in various species of mammals and their presence on all continents suggest that the number of EVs still to be discovered is very important. Some EVs found in animals have characteristics never seen in human EVs. Furthermore, the unique phylogenetic relationships observed between some animal EVs raise interesting questions about the rules that govern the evolution of these viruses. The aim of this review is to present the salient data on animal EVs and to highlight the questions they raise.


Subject(s)
Enterovirus Infections , Enterovirus , Animals , Humans , Phylogeny , Enterovirus/genetics , Enterovirus Infections/epidemiology , Enterovirus Infections/veterinary , Enterovirus Infections/diagnosis , Enterovirus B, Human/genetics , Mammals
10.
Virologie (Montrouge) ; 27(3): 159-172, 2023 06 01.
Article in French | MEDLINE | ID: mdl-37462933

ABSTRACT

The genus Enterovirus (family Picornaviridae) contains numerous viruses, most of which have been identified in humans. Among them, the three serotypes of poliovirus, coxsackieviruses A and B, echoviruses, rhinoviruses and other enteroviruses (EVs) responsible in humans for a wide spectrum of clinical manifestations. There are also 60 identified EVs in different mammals. Some have been found in both humans and animals, demonstrating the possibility of zoonotic transmission of certain EVs. Compared to human EVs, genetic and epidemiological data for animal EVs are scarce. However, the detection of EV in various species of mammals and their presence on all continents suggest that the number of EV still to be discovered is very important. Some EVs found in animals have characteristics never seen in human EVs. Furthermore, the unique phylogenetic relationships observed between animal EVs raise interesting questions about the rules that govern the evolution of these viruses. The aim of this review is to present the salient data on animal EVs and to highlight the questions they raise.


Subject(s)
Enterovirus Infections , Enterovirus , Poliovirus , Animals , Humans , Phylogeny , Enterovirus/genetics , Enterovirus Infections/epidemiology , Enterovirus Infections/veterinary , Poliovirus/genetics , Enterovirus B, Human/genetics , Mammals
11.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33208442

ABSTRACT

Hepatitis C virus (HCV) infection triggers Golgi fragmentation through the Golgi-resident protein immunity-related GTPase M (IRGM). Here, we report the roles of NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) and ASC (apoptosis-associated speck-like protein containing a caspase activation and recruitment domain [CARD]), two inflammasome components, in the initial events leading to this fragmentation. We show that ASC resides at the Golgi with IRGM at homeostasis. Upon infection, ASC dissociates from both IRGM and the Golgi and associates with HCV-induced NLRP3. NLRP3 silencing inhibits Golgi fragmentation. ASC silencing disrupts the Golgi structure in both control and infected cells and reduces the localization of IRGM at the Golgi. IRGM depletion in the ASC-silenced cells cannot totally restore the Golgi structure. These data highlight a role for ASC, upstream of the formation of the inflammasome, in regulating IRGM through its control on the Golgi. A similar mechanism occurs in response to nigericin treatment, but not in cells infected with another member of the Flaviviridae family, Zika virus (ZIKV). We propose a model for a newly ascribed function of the inflammasome components in Golgi structural remodeling during certain stimuli.IMPORTANCE Numerous pathogens can affect cellular homeostasis and organelle dynamics. Hepatitis C virus (HCV) triggers Golgi fragmentation through the immunity-related GTPase M (IRGM), a resident Golgi protein, to enhance its lipid supply for replication. Here, we reveal the role of the inflammasome components NLRP3 and ASC in this process, thus uncovering a new interplay between effectors of inflammation and viral infection or stress. We show that the inflammasome component ASC resides at the Golgi under homeostasis and associates with IRGM. Upon HCV infection, ASC is recruited to NLRP3 and dissociates from IRGM, causing Golgi fragmentation. Our results uncover that aside from their known function in the inflammation response, these host defense regulators also ensure the maintenance of intact intracellular structure in homeostasis, while their activation relieves factors leading to Golgi remodeling.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , GTP-Binding Proteins/metabolism , Golgi Apparatus/physiology , Hepacivirus/isolation & purification , Hepatitis C/virology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Apoptosis , CARD Signaling Adaptor Proteins/genetics , GTP-Binding Proteins/genetics , Golgi Apparatus/virology , Hepatitis C/metabolism , Hepatitis C/pathology , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
12.
PLoS Pathog ; 16(7): e1008737, 2020 07.
Article in English | MEDLINE | ID: mdl-32726355

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. An unbalanced immune response, characterized by a weak production of type I interferons (IFN-Is) and an exacerbated release of proinflammatory cytokines, contributes to the severe forms of the disease. SARS-CoV-2 is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2003 and 2013, respectively. Although IFN treatment gave some encouraging results against SARS-CoV and MERS-CoV in animal models, its potential as a therapeutic against COVID-19 awaits validation. Here, we describe our current knowledge of the complex interplay between SARS-CoV-2 infection and the IFN system, highlighting some of the gaps that need to be filled for a better understanding of the underlying molecular mechanisms. In addition to the conserved IFN evasion strategies that are likely shared with SARS-CoV and MERS-CoV, novel counteraction mechanisms are being discovered in SARS-CoV-2-infected cells. Since the last coronavirus epidemic, we have made considerable progress in understanding the IFN-I response, including its spatiotemporal regulation and the prominent role of plasmacytoid dendritic cells (pDCs), which are the main IFN-I-producing cells. While awaiting the results of the many clinical trials that are evaluating the efficacy of IFN-I alone or in combination with antiviral molecules, we discuss the potential benefits of a well-timed IFN-I treatment and propose strategies to boost pDC-mediated IFN responses during the early stages of viral infection.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Dendritic Cells/immunology , Immunity, Innate/immunology , Interferon Type I/therapeutic use , Pneumonia, Viral/drug therapy , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dendritic Cells/drug effects , Humans , Immunity, Innate/drug effects , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Prognosis , SARS-CoV-2 , COVID-19 Drug Treatment
13.
Trends Immunol ; 40(12): 1134-1148, 2019 12.
Article in English | MEDLINE | ID: mdl-31735513

ABSTRACT

The interferon (IFN) response, a major vertebrate defense mechanism against viral infections, is initiated by RIG-I-like receptor (RLR)-mediated recognition of viral replicative intermediates in the cytosol. RLR purification methods coupled to RNA sequencing have recently led to the characterization of viral nucleic acid features recognized by RLRs in infected cells. This work revealed that some cellular RNAs can bind to RLRs and stimulate the IFN response. We provide an overview of self and non-self RNAs that activate innate immunity, and discuss the cellular dysregulation that allows recognition of cellular RNAs by RLRs, including RNA mislocalization and downregulation of RNA-shielding proteins. These discussions are relevant because manipulating RLR activation presents opportunities for treating viral infections and autoimmune disorders.


Subject(s)
Interferon-Induced Helicase, IFIH1/metabolism , Mitochondria/physiology , RNA, Viral/immunology , RNA/immunology , Virus Diseases/immunology , Viruses/immunology , Animals , Humans , Immunity, Innate , Immunization , Interferons/genetics , Receptors, Retinoic Acid/agonists , Virus Diseases/genetics
14.
EMBO J ; 36(12): 1653-1668, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28473450

ABSTRACT

The cytopathic effects of Zika virus (ZIKV) are poorly characterized. Innate immunity controls ZIKV infection and disease in most infected patients through mechanisms that remain to be understood. Here, we studied the morphological cellular changes induced by ZIKV and addressed the role of interferon-induced transmembrane proteins (IFITM), a family of broad-spectrum antiviral factors, during viral replication. We report that ZIKV induces massive vacuolization followed by "implosive" cell death in human epithelial cells, primary skin fibroblasts and astrocytes, a phenomenon which is exacerbated when IFITM3 levels are low. It is reminiscent of paraptosis, a caspase-independent, non-apoptotic form of cell death associated with the formation of large cytoplasmic vacuoles. We further show that ZIKV-induced vacuoles are derived from the endoplasmic reticulum (ER) and dependent on the PI3K/Akt signaling axis. Inhibiting the Sec61 ER translocon in ZIKV-infected cells blocked vacuole formation and viral production. Our results provide mechanistic insight behind the ZIKV-induced cytopathic effect and indicate that IFITM3, by acting as a gatekeeper for incoming virus, restricts virus takeover of the ER and subsequent cell death.


Subject(s)
Astrocytes/virology , Cell Death , Cytopathogenic Effect, Viral , Epithelial Cells/virology , Fibroblasts/virology , Vacuoles/metabolism , Zika Virus/pathogenicity , Astrocytes/cytology , Astrocytes/physiology , Cells, Cultured , Endoplasmic Reticulum/metabolism , Epithelial Cells/cytology , Epithelial Cells/physiology , Fibroblasts/cytology , Fibroblasts/physiology , Humans , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , SEC Translocation Channels/metabolism , Signal Transduction
15.
J Virol ; 94(22)2020 10 27.
Article in English | MEDLINE | ID: mdl-32878892

ABSTRACT

Yellow fever virus (YFV) is an RNA virus primarily targeting the liver. Severe YF cases are responsible for hemorrhagic fever, plausibly precipitated by excessive proinflammatory cytokine response. Pathogen recognition receptors (PRRs), such as the cytoplasmic retinoic acid inducible gene I (RIG-I)-like receptors (RLRs), and the viral RNA sensor protein kinase R (PKR), are known to initiate a proinflammatory response upon recognition of viral genomes. Here, we sought to reveal the main determinants responsible for the acute cytokine expression occurring in human hepatocytes following YFV infection. Using a RIG-I-defective human hepatoma cell line, we found that RIG-I largely contributes to cytokine secretion upon YFV infection. In infected RIG-I-proficient hepatoma cells, RIG-I was localized in stress granules. These granules are large aggregates of stalled translation preinitiation complexes known to concentrate RLRs and PKR and are so far recognized as hubs orchestrating RNA virus sensing. Stable knockdown of PKR in hepatoma cells revealed that PKR contributes to both stress granule formation and cytokine induction upon YFV infection. However, stress granule disruption did not affect the cytokine response to YFV infection, as assessed by small interfering RNA (siRNA)-knockdown-mediated inhibition of stress granule assembly. Finally, no viral RNA was detected in stress granules using a fluorescence in situ hybridization approach coupled with immunofluorescence. Our findings suggest that both RIG-I and PKR mediate proinflammatory cytokine induction in YFV-infected hepatocytes, in a stress granule-independent manner. Therefore, by showing the uncoupling of the cytokine response from the stress granule formation, our model challenges the current view in which stress granules are required for the mounting of the acute antiviral response.IMPORTANCE Yellow fever is a mosquito-borne acute hemorrhagic disease caused by yellow fever virus (YFV). The mechanisms responsible for its pathogenesis remain largely unknown, although increased inflammation has been linked to worsened outcome. YFV targets the liver, where it primarily infects hepatocytes. We found that two RNA-sensing proteins, RIG-I and PKR, participate in the induction of proinflammatory mediators in human hepatocytes infected with YFV. We show that YFV infection promotes the formation of cytoplasmic structures, termed stress granules, in a PKR- but not RIG-I-dependent manner. While stress granules were previously postulated to be essential platforms for immune activation, we found that they are not required for the production of proinflammatory mediators upon YFV infection. Collectively, our work uncovered molecular events triggered by the replication of YFV, which could prove instrumental in clarifying the pathogenesis of the disease, with possible repercussions for disease management.


Subject(s)
DEAD Box Protein 58/metabolism , Yellow fever virus/metabolism , eIF-2 Kinase/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Carcinoma, Hepatocellular , Cell Line , Cell Line, Tumor , Cytokines/metabolism , DEAD Box Protein 58/deficiency , DEAD Box Protein 58/genetics , DNA Helicases/genetics , Gene Knockdown Techniques , Haplorhini , Hepatocytes/virology , Humans , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , RNA, Small Interfering , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Receptors, Immunologic , T-Cell Intracellular Antigen-1/genetics , Transcriptome , eIF-2 Kinase/genetics
16.
Arch Virol ; 166(9): 2529-2540, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34251549

ABSTRACT

RT-qPCR detection of SARS-CoV-2 RNA still represents the method of reference to diagnose and monitor COVID-19. From the onset of the pandemic, however, doubts have been expressed concerning the sensitivity of this molecular diagnosis method. Droplet digital PCR (ddPCR) is a third-generation PCR technique that is particularly adapted to detecting low-abundance targets. We developed two-color ddPCR assays for the detection of four different regions of SARS-CoV-2 RNA, including non-structural (IP4-RdRP, helicase) and structural (E, N) protein-encoding sequences. We observed that N or E subgenomic RNAs are generally more abundant than IP4 and helicase RNA sequences in cells infected in vitro, suggesting that detection of the N gene, coding for the most abundant subgenomic RNA of SARS-CoV-2, increases the sensitivity of detection during the highly replicative phase of infection. We investigated 208 nasopharyngeal swabs sampled in March-April 2020 in different hospitals of Greater Paris. We found that 8.6% of informative samples (n = 16/185, P < 0.0001) initially scored as "non-positive" (undetermined or negative) by RT-qPCR were positive for SARS-CoV-2 RNA by ddPCR. Our work confirms that the use of ddPCR modestly, but significantly, increases the proportion of upper airway samples testing positive in the framework of first-line diagnosis of a French population.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing/instrumentation , Color , Coronavirus Envelope Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , France/epidemiology , Gene Expression , Humans , Limit of Detection , Nasopharynx/virology , Phosphoproteins/genetics , RNA Helicases/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Load
17.
RNA ; 24(10): 1285-1296, 2018 10.
Article in English | MEDLINE | ID: mdl-30012569

ABSTRACT

Defective interfering (DI) genomes, or defective viral genomes (DVGs), are truncated viral genomes generated during replication of most viruses, including live viral vaccines. Among these, "panhandle" or copy-back (cb) and "hairpin" or snap-back (sb) DI genomes are generated during RNA virus replication. 5' cb/sb DI genomes are highly relevant for viral pathogenesis since they harbor immunostimulatory properties that increase virus recognition by the innate immune system of the host. We have developed DI-tector, a user-friendly and freely available program that identifies and characterizes cb/sb genomes from next-generation sequencing (NGS) data. DI-tector confirmed the presence of 5' cb genomes in cells infected with measles virus (MV). DI-tector also identified a novel 5' cb genome, as well as a variety of 3' cb/sb genomes whose existence had not previously been detected by conventional approaches in MV-infected cells. The presence of these novel cb/sb genomes was confirmed by RT-qPCR and RT-PCR, validating the ability of DI-tector to reveal the landscape of DI genome population in infected cell samples. Performance assessment using different experimental and simulated data sets revealed the robust specificity and sensitivity of DI-tector. We propose DI-tector as a universal tool for the unbiased detection of DI viral genomes, including 5' cb/sb DI genomes, in NGS data.


Subject(s)
Defective Viruses/genetics , Genome, Viral , Genomics , Software , Cell Line , Computational Biology/methods , Genes, rRNA , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , RNA, Viral , Reproducibility of Results , Sensitivity and Specificity , Virus Replication
18.
J Virol ; 93(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31534046

ABSTRACT

The endoplasmic reticulum (ER) is the site for Zika virus (ZIKV) replication and is central to the cytopathic effects observed in infected cells. ZIKV induces the formation of ER-derived large cytoplasmic vacuoles followed by "implosive" cell death. Little is known about the nature of the ER factors that regulate flavivirus replication. Atlastins (ATL1, -2, and -3) are dynamin-related GTPases that control the structure and the dynamics of the ER membrane. We show here that ZIKV replication is significantly decreased in the absence of ATL proteins. The appearance of infected cells is delayed, the levels of intracellular viral proteins and released virus are reduced, and the cytopathic effects are strongly impaired. We further show that ATL3 is recruited to viral replication sites and interacts with the nonstructural viral proteins NS2A and NS2B3. Thus, proteins that shape and maintain the ER tubular network ensure efficient ZIKV replication.IMPORTANCE Zika virus (ZIKV) is an emerging virus associated with Guillain-Barré syndrome, and fetal microcephaly as well as other neurological complications. There is no vaccine or specific antiviral treatment against ZIKV. We found that endoplasmic reticulum (ER)-shaping atlastin proteins (ATL1, -2, and -3), which induce ER membrane fusion, facilitate ZIKV replication. We show that ATL3 is recruited to the viral replication site and colocalize with the viral proteins NS2A and NS2B3. The results provide insights into host factors used by ZIKV to enhance its replication.


Subject(s)
Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/metabolism , Virus Replication/physiology , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Zika Virus/physiology , Antiviral Agents/pharmacology , Cytopathogenic Effect, Viral , GTP Phosphohydrolases/genetics , GTP-Binding Proteins , Gene Knockout Techniques , HeLa Cells , Humans , Membrane Proteins , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Release , Zika Virus/drug effects
19.
Int J Mol Sci ; 20(8)2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30991717

ABSTRACT

The recent emergence and re-emergence of viral infections transmitted by vectors, such as the Zika virus (ZIKV) and Dengue virus (DENV), is a cause for international concern. These highly pathogenic arboviruses represent a serious health burden in tropical and subtropical areas of the world. Despite the high morbidity and mortality associated with these viral infections, antiviral therapies are missing. Medicinal plants have been widely used to treat various infectious diseases since millenaries. Several compounds extracted from plants exhibit potent effects against viruses in vitro, calling for further investigations regarding their efficacy as antiviral drugs. Here, we demonstrate that an extract from Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island, inhibits the infection of ZIKV in vitro without exhibiting cytotoxic effects. The extract was active against different ZIKV African and Asian strains, including an epidemic one. Time-of-drug-addition assays revealed that the P. mauritianum extract interfered with the attachment of the viral particles to the host cells. Importantly, the P. mauritianum extract was also able to prevent the infection of human cells by four dengue virus serotypes. Due to its potency and ability to target ZIKV and DENV particles, P. mauritianum may be of value for identifying and characterizing antiviral compounds to fight medically-important flaviviruses.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue/drug therapy , Magnoliopsida/chemistry , Polyphenols/pharmacology , Zika Virus Infection/drug therapy , Zika Virus/drug effects , Animals , Antiviral Agents/chemistry , Cells, Cultured , Chlorocebus aethiops , Dengue/epidemiology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Polyphenols/chemistry , Reunion/epidemiology , Vero Cells , Zika Virus Infection/epidemiology
20.
Article in English | MEDLINE | ID: mdl-29760125

ABSTRACT

Although members of the Flaviviridae display high incidence, morbidity, and mortality rates, the development of specific antiviral drugs for each virus is unlikely. Cyclophilins, a family of host peptidyl-prolyl cis-trans isomerases (PPIases), play a pivotal role in the life cycles of many viruses and therefore represent an attractive target for broad-spectrum antiviral development. We report here the pangenotypic anti-hepatitis C virus (HCV) activity of a small-molecule cyclophilin inhibitor (SMCypI). Mechanistic and modeling studies revealed that the SMCypI bound to cyclophilin A in competition with cyclosporine (CsA), inhibited its PPIase activity, and disrupted the CypA-nonstructural protein 5A (NS5A) interaction. Resistance selection showed that the lead SMCypI hardly selected amino acid substitutions conferring low-level or no resistance in vitro Interestingly, the SMCypI selected D320E and Y321H substitutions, located in domain II of the NS5A protein. These substitutions were previously associated with low-level resistance to cyclophilin inhibitors such as alisporivir. Finally, the SMCypI inhibited the replication of other members of the Flaviviridae family with higher 50% effective concentrations (EC50s) than for HCV. Thus, because of its chemical plasticity and simplicity of synthesis, our new family of SMCypIs represents a promising new class of drugs with the potential for broad-spectrum anti-Flaviviridae activity as well as an invaluable tool to explore the role of cyclophilins in viral life cycles.


Subject(s)
Antiviral Agents/pharmacology , Cyclophilin A/antagonists & inhibitors , Hepacivirus/drug effects , Viral Nonstructural Proteins/metabolism , Amino Acid Substitution/genetics , Cyclophilin A/metabolism , Cyclosporine/pharmacology , Drug Resistance, Viral/genetics , Hepacivirus/growth & development , Hepatitis C/drug therapy , Humans , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL