ABSTRACT
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
Subject(s)
Evolution, Molecular , Genes, Plant , Genomics , Magnoliopsida , Phylogeny , Fossils , Genes, Plant/genetics , Magnoliopsida/genetics , Magnoliopsida/classification , Nuclear Proteins/geneticsABSTRACT
Sapindales is an angiosperm order of high economic and ecological value comprising nine families, c. 479 genera, and c. 6570 species. However, family and subfamily relationships in Sapindales remain unclear, making reconstruction of the order's spatio-temporal and morphological evolution difficult. In this study, we used Angiosperms353 target capture data to generate the most densely sampled phylogenetic trees of Sapindales to date, with 448 samples and c. 85% of genera represented. The percentage of paralogous loci and allele divergence was characterized across the phylogeny, which was time-calibrated using 29 rigorously assessed fossil calibrations. All families were supported as monophyletic. Two core family clades subdivide the order, the first comprising Kirkiaceae, Burseraceae, and Anacardiaceae, the second comprising Simaroubaceae, Meliaceae, and Rutaceae. Kirkiaceae is sister to Burseraceae and Anacardiaceae, and, contrary to current understanding, Simaroubaceae is sister to Meliaceae and Rutaceae. Sapindaceae is placed with Nitrariaceae and Biebersteiniaceae as sister to the core Sapindales families, but the relationships between these families remain unclear, likely due to their rapid and ancient diversification. Sapindales families emerged in rapid succession, coincident with the climatic change of the Mid-Cretaceous Hothouse event. Subfamily and tribal relationships within the major families need revision, particularly in Sapindaceae, Rutaceae and Meliaceae. Much of the difficulty in reconstructing relationships at this level may be caused by the prevalence of paralogous loci, particularly in Meliaceae and Rutaceae, that are likely indicative of ancient gene duplication events such as hybridization and polyploidization playing a role in the evolutionary history of these families. This study provides key insights into factors that may affect phylogenetic reconstructions in Sapindales across multiple scales, and provides a state-of-the-art phylogenetic framework for further research.
ABSTRACT
PREMISE: Universal target enrichment kits maximize utility across wide evolutionary breadth while minimizing the number of baits required to create a cost-efficient kit. The Angiosperms353 kit has been successfully used to capture loci throughout the angiosperms, but the default target reference file includes sequence information from only 6-18 taxa per locus. Consequently, reads sequenced from on-target DNA molecules may fail to map to references, resulting in fewer on-target reads for assembly, and reducing locus recovery. METHODS: We expanded the Angiosperms353 target file, incorporating sequences from 566 transcriptomes to produce a 'mega353' target file, with each locus represented by 17-373 taxa. This mega353 file is a drop-in replacement for the original Angiosperms353 file in HybPiper analyses. We provide tools to subsample the file based on user-selected taxon groups, and to incorporate other transcriptome or protein-coding gene data sets. RESULTS: Compared to the default Angiosperms353 file, the mega353 file increased the percentage of on-target reads by an average of 32%, increased locus recovery at 75% length by 49%, and increased the total length of the concatenated loci by 29%. DISCUSSION: Increasing the phylogenetic density of the target reference file results in improved recovery of target capture loci. The mega353 file and associated scripts are available at: https://github.com/chrisjackson-pellicle/NewTargets.
ABSTRACT
Background The Sunda-Sahul Convergence Zone, defined here as the area comprising Australia, New Guinea, and Southeast Asia (Indonesia to Myanmar), straddles the Sunda and Sahul continental shelves and is one of the most biogeographically famous and important regions in the world. Floristically, it is thought to harbour a large amount of the world's diversity. Despite the importance of the area, a checklist of the flora has never before been published. Here we present the first working checklist of vascular plants for the Sunda-Sahul Convergence Zone. The list was compiled from 24 flora volumes, online databases and unpublished plot data. Taxonomic nomenclature was updated, and each species was coded into nested biogeographic regions. The list includes 60,415 species in 5,135 genera and 363 families of vascular plants. New information This is the first species-level checklist of the region and presents an updated census of the region's floristic biodiversity. The checklist confirms that species richness of the SSCZ is comparable to that of the Neotropics, and highlights areas in need of further documentation and taxonomic work. This checklist provides a novel dataset for studying floristic ecology and evolution in this biogeographically important region of very high global biodiversity.
ABSTRACT
Cell lines can be useful experimental tools for studying marine fish, which are often difficult to routinely obtain and maintain in the laboratory. As few cell lines are available from coldwater marine fish, cultures were initiated from late gastrula embryos of haddock (Melanogrammus aeglefinus) in Leibovitz's L-15 with fetal bovine serum (FBS). From one culture, a cell line (HEW) emerged that has been grown for close to 100 population doublings, was heteroploid, and expressed telomerase activity, all of which suggest HEW is immortal. Growth occurred only if FBS was present and was optimal at 12 to 18 degrees C. Usually most cells had an epithelial-like morphology, but under some conditions, cells drew up into round central bodies from which radiated cytoplasmic extensions with multiple branches. These neural-like cells appeared within a few hours of cultures being placed at 28 degrees C or being switch to a simple salt solution (SSS). At 28 degrees C, cells died within 24 h. In SSS, HEW cells survived as a monolayer for at least 7 days. The sensitivity of HEW cells to morphological change and their capacity to withstand starvation should make them useful for investigating cellular responses to environmental stresses.
Subject(s)
Embryo, Nonmammalian/cytology , Gadiformes/embryology , Animals , Biomarkers , Cell Culture Techniques , Cell Line , Cell Proliferation , Cell Shape , Culture Media , Osmolar Concentration , Temperature , Time FactorsABSTRACT
PURPOSE: To determine the role of eukaryotic translation initiation factor 5A (eIF5A) in TNF-alpha-induced apoptosis of lamina cribrosa (LC) cells. METHODS: LC cells were isolated from optic nerve heads of eyes of two human donors. The cells were treated with TNF-alpha and camptothecin, a TNF synergist, and the incidence of apoptosis was scored by Hoechst staining. Expression of eIF5A protein in response to camptothecin or a combination of camptothecin and TNF-alpha was determined by Western blot analysis. The ability of small inhibitory (si)RNAs directed against eIF5A to protect LC cells from TNF-alpha-induced apoptosis was determined by Hoechst and TUNEL staining of transfected LC cells. RESULTS: TNF-alpha and camptothecin synergized to induce greater than two times more apoptosis in LC cells than when the cells were treated with TNF-alpha or camptothecin separately. Expression of eIF5A protein increased significantly after 8 hours of exposure to TNF-alpha and camptothecin, but not in response to camptothecin alone. siRNAs directed against eIF5A reduced apoptosis of LC cells in response to TNF-alpha and camptothecin by between 35% and 69%, as determined by Hoechst staining. An siRNA against glyceraldehyde-3-phosphate dehydrogenase (GAPDH) also reduced apoptosis of LC cells by 42%. TUNEL of transfected LC cells treated with TNF-alpha and camptothecin revealed an 80% reduction in apoptosis with siRNA against eIF5A. CONCLUSIONS: TNF-alpha, in synergy with camptothecin, induces apoptosis in human LC cells. eIF5A is upregulated by LC cells in response to TNF-alpha, and siRNAs against eIF5A protect LC cells from apoptosis. Thus, eIF5A appears to be a novel proapoptotic protein in the TNF pathway and a possible target for treatment of glaucoma.