Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Opt Express ; 32(4): 5737-5747, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439292

ABSTRACT

Dual-wavelength fiber lasers operating with a wide spectral separation are of considerable importance for many applications. In this study, we propose and experimentally explore an all-fiberized dual-wavelength random fiber laser with bi-directional laser output operating at 1064 and 1550 nm, respectively. A specially designed Er/Yb co-doped fiber, by optimizing the concentrations of the co-doped Er, Yb, Al and P, was developed for simultaneously providing Er ions gain and Yb ions gain for RFL. Two spans of single mode passive fibers are employed to providing random feedback for 1064 and 1550 nm random lasing, respectively. The RFL generates 5.35 W at 1064 nm and 6.61 W at 1550 nm random lasers. Two power amplifiers (PA) enhance the seed laser to 50 W at 1064 nm with a 3 dB bandwidth of 0.31 nm and 20 W at 1550 nm with a 3 dB bandwidth of 1.18 nm. Both the short- and long-term time domain stabilities are crucial for practical applications. The output lasers of 1064 and 1550 nm PAs are in the single transverse mode operating with a nearly Gaussian profile. To the best of our knowledge, this is the first demonstration of a dual-wavelength RFL, with a spectral separation as far as about 500 nm in an all-fiber configuration.

2.
J Environ Manage ; 355: 120504, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447513

ABSTRACT

Ammonia-oxidation process directly contribute to soil nitrous oxide (N2O) emissions in agricultural soils. However, taxonomy of the key nitrifiers (within ammonia oxidising bacteria (AOB), archaea (AOA) and complete ammonia oxidisers (comammox Nitrospira)) responsible for substantial N2O emissions in agricultural soils is unknown, as is their regulation by soil biotic and abiotic factors. In this study, cumulative N2O emissions, nitrification rates, abundance and community structure of nitrifiers were investigated in 16 agricultural soils from major crop production regions of China using microcosm experiments with amended nitrogen (N) supplemented or not with a nitrification inhibitor (nitrapyrin). Key nitrifier groups involved in N2O emissions were identified by comparative analyses of the different treatments, combining sequencing and random forest analyses. Soil cumulative N2O emissions significantly increased with soil pH in all agricultural soils. However, they decreased with soil organic carbon (SOC) in alkaline soils. Nitrapyrin significantly inhibited soil cumulative N2O emissions and AOB growth, with a significant inhibition of the AOB Nitrosospira cluster 3a.2 (D11) abundance. One Nitrosospira multiformis-like OTU phylotype (OTU34), which was classified within the AOB Nitrosospira cluster 3a.2 (D11), had the greatest importance on cumulative N2O emissions and its growth significantly depended on soil pH and SOC contents, with higher growth at high pH and low SOC conditions. Collectively, our results demonstrate that alkaline soils with low SOC contents have high N2O emissions, which were mainly driven by AOB Nitrosospira cluster 3a.2 (D11). Nitrapyrin can efficiently reduce nitrification-related N2O emissions by inhibiting the activity of AOB Nitrosospira cluster 3a.2 (D11). This study advances our understanding of key nitrifiers responsible for high N2O emissions in agricultural soils and their controlling factors, and provides vital knowledge for N2O emission mitigation in agricultural ecosystems.


Subject(s)
Ecosystem , Soil , Soil/chemistry , Ammonia/chemistry , Carbon , Oxidation-Reduction , Archaea , Nitrification , Soil Microbiology
3.
Opt Express ; 31(14): 22372-22384, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475349

ABSTRACT

Based on Dammann vortex grating and adaptive gain stochastic parallel gradient descent algorithm, we theoretically proposed a phase control technology scheme of the coherent beam combining system for generating perfect vectorial vortex beams (VVBs). The simulated results demonstrate that the discrete phase locking for different types of VVBs (including vortex beams, vector beams, and generalized VVBs) can be successfully realized. The intensity distributions, polarization orientation, Pancharatnam phases, and beam widths of different |Hm,n〉 states with the obtained discrete phase distribution further prove that the generated beams are perfect VVBs. Subsequently, the phase aberration residual for different VVBs is evaluated using the normalized phase cosine distance function, and their values range from 0.01 to 0.08, which indicates the obtained discrete phase distribution is close to the ideal phase distribution. In addition, benefitting from the high bandwidth of involved devices in the proposed scheme, the influence of dynamic phase noise can be negligible. The proposed method could be beneficial to realize and switch flexible perfect VVBs in further applications.

4.
Opt Express ; 31(7): 11885-11898, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155813

ABSTRACT

Based on coherent beam combining, we propose a method for generating the perfect vectorial vortex beams (VVBs) with a specially designed radial phase-locked Gaussian laser array, which is composed of two discrete vortex arrays with right-handed (RH) and left-handed (LH) circularly polarized states and in turn adjacent to each other. The simulation results demonstrate that the VVBs with correct polarization order and topological Pancharatnam charge are successfully generated. The diameter and thickness of generated VVBs independent of the polarization orders and topological Pancharatnam charges further prove that the generated VVBs are perfect. Propagating in free space, the generated perfect VVBs can be stable for a certain distance, even with half-integer orbital angular momentum. In addition, constant phases φ0 between the RH and LH circularly polarized laser arrays has no effect on polarization order and topological Pancharatnam charge but makes polarization orientation to rotate φ0/2. Moreover, perfect VVBs with elliptically polarized states can be flexibly generated only by adjusting the intensity ratio between the RH and LH circularly polarized laser array, and such perfect VVBs are also stable on beam propagation. The proposed method could provide a valuable guidance for high power perfect VVBs in future applications.

5.
Environ Microbiol ; 23(4): 1907-1924, 2021 04.
Article in English | MEDLINE | ID: mdl-32996254

ABSTRACT

Plants harbour highly diverse mycobiomes which sustain essential functions for host health and productivity. However, ecological processes that govern the plant-mycobiome assembly, interactions and their impact on ecosystem functions remain poorly known. Here we characterized the ecological role and community assembly of both abundant and rare fungal taxa along the soil-plant continuums (rhizosphere, phyllosphere and endosphere) in the maize-wheat/barley rotation system under different fertilization practices at two contrasting sites. Our results indicate that mycobiome assembly is shaped predominantly by compartment niche and host species rather than by environmental factors. Moreover, crop-associated fungal communities are dominated by few abundant taxa mainly belonging to Sordariomycetes and Dothideomycetes, while the majority of diversity within mycobiomes are represented by rare taxa. For plant compartments, the abundant sub-community is mainly determined by stochastic processes. In contrast, the rare sub-community is more sensitive to host selection and mainly governed by deterministic processes. Furthermore, our results demonstrate that rare taxa play an important role in fungal co-occurrence network and ecosystem functioning like crop yield and soil enzyme activities. These results significantly advance our understanding of crop mycobiome assembly and highlight the key role of rare taxa in sustaining the stability of crop mycobiomes and ecosystem functions.


Subject(s)
Crops, Agricultural/microbiology , Mycobiome , Ecosystem , Fungi/genetics , Rhizosphere , Soil Microbiology
6.
New Phytol ; 229(2): 1091-1104, 2021 01.
Article in English | MEDLINE | ID: mdl-32852792

ABSTRACT

Plant microbiomes are essential to host health and productivity but the ecological processes that govern crop microbiome assembly are not fully known. Here we examined bacterial communities across 684 samples from soils (rhizosphere and bulk soil) and multiple compartment niches (rhizoplane, root endosphere, phylloplane, and leaf endosphere) in maize (Zea mays)-wheat (Triticum aestivum)/barley (Hordeum vulgare) rotation system under different fertilization practices at two contrasting sites. Our results demonstrate that microbiome assembly along the soil-plant continuum is shaped predominantly by compartment niche and host species rather than by site or fertilization practice. From soils to epiphytes to endophytes, host selection pressure sequentially increased and bacterial diversity and network complexity consequently reduced, with the strongest host effect in leaf endosphere. Source tracking indicates that crop microbiome is mainly derived from soils and gradually enriched and filtered at different plant compartment niches. Moreover, crop microbiomes were dominated by a few dominant taxa (c. 0.5% of bacterial phylotypes), with bacilli identified as the important biomarker taxa for wheat and barley and Methylobacteriaceae for maize. Our work provides comprehensive empirical evidence on host selection, potential sources and enrichment processes for crop microbiome assembly, and has important implications for future crop management and manipulation of crop microbiome for sustainable agriculture.


Subject(s)
Microbiota , Soil Microbiology , Bacteria , Plant Roots , Rhizosphere
7.
Opt Express ; 28(7): 10378-10385, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32225624

ABSTRACT

In this study, we presented a high-power widely tunable all-fiber narrowband superfluorescent fiber source (SFS) by employing two tunable bandpass filters and three amplifier stages. More than 935 W output power is achieved, with a slope efficiency of >75% and a beam quality factor of M2=1.40. The tuning of the narrowband SFS ranges from ∼1045 nm to ∼1085 nm with a full width at half maximum linewidth of less than 0.71 nm. The tunable narrowband SFS stably operates without the influence of parasitic oscillation and self-pulsing effects under maximum power. To the best of our knowledge, this study is the first to demonstrate a widely tunable all-fiber narrowband SFS around 1 µm wavelength region with output power reaching kilowatt-level.

8.
Neural Plast ; 2020: 1484087, 2020.
Article in English | MEDLINE | ID: mdl-32565774

ABSTRACT

Background: Visceral pain is one of the most common types of pain and particularly in the abdomen is associated with gastrointestinal diseases. Bulleyaconitine A (BAA), isolated from Aconitum bulleyanum, is prescribed in China to treat chronic pain. The present study is aimed at evaluating the mechanisms underlying BAA visceral antinociception. Methods: The rat model of chronic visceral hypersensitivity was set up by colonic perfusion of 2,4,6-trinitrobenzene sulfonic acid (TNBS) on postnatal day 10 with coapplication of heterotypic intermittent chronic stress (HeICS). Results: The rat model of chronic visceral hypersensitivity exhibited remarkable abdominal withdrawal responses and mechanical hyperalgesia in hind paws, which were dose-dependently attenuated by single subcutaneous of administration of BAA (30 and 90 µg/kg). Pretreatment with the microglial inhibitor minocycline, dynorphin A antiserum, and κ-opioid receptor antagonist totally blocked BAA-induced visceral antinociception and mechanical antihyperalgesia. Spontaneous excitatory postsynaptic currents (sEPSCs) in spinal dorsal horn lamina II neurons were recorded by using whole-cell patch clamp. Its frequency (but not amplitude) from TNBS-treated rats was remarkably higher than that from naïve rats. BAA (1 µM) significantly reduced the frequency of sEPSCs from TNBS-treated rats but not naïve rats. BAA-inhibited spinal synaptic plasticity was blocked by minocycline, the dynorphin A antiserum, and κ-opioid receptor antagonist. Dynorphin A also inhibited spinal synaptic plasticity in a κ-opioid receptor-dependent manner. Conclusions: These results suggest that BAA produces visceral antinociception by stimulating spinal microglial release of dynorphin A, which activates presynaptic κ-opioid receptors in afferent neurons and inhibits spinal synaptic plasticity, highlighting a novel interaction mode between microglia and neurons.


Subject(s)
Aconitine/analogs & derivatives , Analgesics/administration & dosage , Dynorphins/metabolism , Microglia/drug effects , Neuronal Plasticity/drug effects , Nociception/drug effects , Synapses/drug effects , Visceral Pain/prevention & control , Aconitine/administration & dosage , Animals , Female , Microglia/metabolism , Posterior Horn Cells/drug effects , Posterior Horn Cells/physiology , Rats, Sprague-Dawley , Synapses/physiology , Synaptic Transmission/drug effects , Visceral Pain/metabolism
9.
Opt Express ; 27(16): 22393-22407, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510534

ABSTRACT

High-power fiber lasers have been widely explored in engineering and science, and improving the beam quality restricted by transverse mode instability (TMI) is waiting to be solved for extra high-power applications. Here, we theoretically propose a phase transition model for understanding TMI in a fiber oscillator. A general dynamics model describing TMI is established by modifying the heat equation, and then a special dynamics model of a two-mode fiber (TMF) oscillator is obtained by applying this general dynamics model to TMF oscillator case. Theoretical analysis shows that there is a reversible phase transition point in this TMF oscillator model, which can well explain the sudden and reversible change of TMI. Based on linear stability analysis near the phase transition point, an analytical threshold formula of TMI is given to calculate the TMI threshold in the TMF oscillator. The calculated results are consistent with the reported experimental results. Furthermore, the relationship between the TMI threshold and several parameters was also discussed in detail such as laser wavelength, pump wavelength, core radius, cladding radius, etc. This theoretical model will be useful to understand and suppress the TMI in fiber oscillators.

10.
Microb Ecol ; 75(4): 1009-1023, 2018 May.
Article in English | MEDLINE | ID: mdl-29124311

ABSTRACT

Climate change is projected to have impacts on precipitation and temperature regimes in drylands of high elevation regions, with especially large effects in the Qinghai-Tibetan Plateau. However, there was limited information about how the projected climate change will impact on the soil microbial community and their activity in the region. Here, we present results from a study conducted across 72 soil samples from 24 different sites along a temperature and precipitation gradient (substituted by aridity index ranging from 0.079 to 0.89) of the Plateau, to assess how changes in aridity affect the abundance, community composition, and diversity of bacteria, ammonia-oxidizers, and denitrifers (nirK/S and nosZ genes-containing communities) as well as nitrogen (N) turnover enzyme activities. We found V-shaped or inverted V-shaped relationships between the aridity index (AI) and soil microbial parameters (gene abundance, community structures, microbial diversity, and N turnover enzyme activities) with a threshold at AI = 0.27. The increasing or decreasing rates of the microbial parameters were higher in areas with AI < 0.27 (alpine steppes) than in mesic areas with 0.27 < AI < 0.89 (alpine meadow and swamp meadow). The results indicated that the projected warming and wetting have a strong impact on soil microbial communities in the alpine steppes.


Subject(s)
Climate Change , Grassland , Microbiota/genetics , Microbiota/physiology , Soil Microbiology , Soil/chemistry , Ammonia/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Biodiversity , DNA, Bacterial/genetics , Denitrification/genetics , Environmental Monitoring , Enzyme Activation , Enzyme Assays , Genes, Bacterial/genetics , Nitrification/genetics , Nitrogen/metabolism , Nitrogen Cycle , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Temperature , Tibet
11.
Microb Ecol ; 72(1): 221-230, 2016 07.
Article in English | MEDLINE | ID: mdl-27072664

ABSTRACT

Despite the utmost importance of microorganisms in maintaining ecosystem functioning and their ubiquitous distribution, our knowledge of the large-scale pattern of microbial diversity is limited, particularly in grassland soils. In this study, the microbial communities of 99 soil samples spanning over 3000 km across grassland ecosystems in northern China were investigated using high-throughput sequencing to analyze the beta diversity pattern and the underlying ecological processes. The microbial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Planctomycetes across all the soil samples. Spearman's correlation analysis indicated that climatic factors and soil pH were significantly correlated with the dominant microbial taxa, while soil microbial richness was positively linked to annual precipitation. The environmental divergence-dissimilarity relationship was significantly positive, suggesting the importance of environmental filtering processes in shaping soil microbial communities. Structural equation modeling found that the deterministic process played a more important role than the stochastic process on the pattern of soil microbial beta diversity, which supported the predictions of niche theory. Partial mantel test analysis have showed that the contribution of independent environmental variables has a significant effect on beta diversity, while independent spatial distance has no such relationship, confirming that the deterministic process was dominant in structuring soil microbial communities. Overall, environmental filtering process has more important roles than dispersal limitation in shaping microbial beta diversity patterns in the grassland soils.


Subject(s)
Bacteria/classification , Poaceae/microbiology , Soil Microbiology , Soil/chemistry , Bacteria/isolation & purification , Bacteria/metabolism , Biodiversity , Chemical Phenomena , China , Climate , DNA, Bacterial/genetics , Grassland , Hydrogen-Ion Concentration , Poaceae/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
12.
Environ Monit Assess ; 188(2): 112, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26803661

ABSTRACT

Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.


Subject(s)
Environmental Monitoring , Industrial Waste/analysis , Soil Microbiology , Soil Pollutants/analysis , Actinobacteria , Bacteria/classification , Bacteria/drug effects , Bacteria/growth & development , Denaturing Gradient Gel Electrophoresis , India , Industrial Waste/statistics & numerical data , Metals, Heavy/analysis , Metals, Heavy/toxicity , RNA, Ribosomal, 16S , Soil/chemistry , Soil Pollutants/toxicity
13.
Environ Monit Assess ; 186(7): 4037-50, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24554021

ABSTRACT

Soil nitrifiers have been showing an important role in assessing environmental pollution as sensitive biomarkers. In this study, the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated in long-term industrial waste effluent (IWE) polluted soils. Three different IWE polluted soils characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) were collected in triplicate along Mahi River basin, Gujarat, Western India. Quantitative numbers of ammonia monooxygenase α-subunit (amoA) genes as well as 16S rRNA genes indicated apparent deleterious effect of IWE on abundance of soil AOA, AOB, bacteria, and archaeal populations. Relatively, AOB was more abundant than AOA in the highly contaminated soil R3, while predominance of AOA was noticed in uncontaminated (R1) and moderately contaminated (R2) soils. Soil potential nitrification rate (PNR) significantly (P < 0.05) decreased in polluted soils R2 and R3. Reduced diversity accompanied by apparent community shifts of both AOB and AOA populations was detected in R2 and R3 soils. AOB were dominated with Nitrosospira-like sequences, whereas AOA were dominated by Thaumarchaeal "group 1.1b (Nitrososphaera clusters)." We suggest that the significant reduction in abundance and diversity AOA and AOB could serve as relevant bioindicators for soil quality monitoring of polluted sites. These results could be further useful for better understanding of AOB and AOA communities in polluted soils.


Subject(s)
Archaea/physiology , Bacteria/metabolism , Environmental Monitoring , Soil Microbiology , Ammonia/analysis , Ammonia/metabolism , Archaea/classification , Archaea/drug effects , Bacteria/drug effects , Bacteria/growth & development , India , Nitrification/drug effects , Oxidoreductases/analysis , Soil/chemistry
14.
Heliyon ; 10(12): e32743, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975171

ABSTRACT

The pathogenesis of schizophrenia (SCZ) is heavily influenced by genetic factors. Ring finger protein 4 (RNF4) and squamous cell carcinoma antigen recognized by T cells 3 (SART3) are thought to be involved in nervous system growth and development via oxidative stress pathways. Moreover, they have previously been linked to SCZ. Yet the role of RNF4 and SART3 in SCZ remains unclear. Here, we investigated how these two genes are involved in SCZ by studying their variants observed in patients. We first observed significantly elevated mRNA levels of RNF4 and SART3 in the peripheral blood in both first-episode (n = 30) and chronic (n = 30) SCZ patients compared to controls (n = 60). Next, we targeted-sequenced three single nucleotide polymorphisms (SNPs) in SART3 and six SNPs in RNF4 for association with SCZ using the genomic DNA extracted from peripheral blood leukocytes from SCZ participants (n = 392) and controls (n = 572). We observed a combination of SNPs that included rs1203860, rs2282765 (both in RNF4), and rs2287550 (in SART3) was associated with increased risk of SCZ, suggesting common pathogenic mechanisms between these two genes. We then conducted experiments in HEK293T cells to better understand the interaction between RNF4 and SART3. We observed that SART3 lowered the expression of RNF4 through ubiquitination and downregulated the expression of nuclear factor E2-related factor 2 (NRF2), a downstream factor of RNF4, implicating the existence of a possible shared regulatory mechanism for RNF4 and SART3. In conclusion, our study provides evidence that the interaction between RNF4 and SART3 contributes to the risk of SCZ. The findings shed light on the underlying molecular mechanisms of SCZ and may lead to the development of new therapies and interventions for this disorder.

15.
Sci Total Environ ; 947: 174594, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38992349

ABSTRACT

During the recent times, environmental antibiotic resistance genes (ARGs) and their potential transfer to other bacterial hosts of pathogenic importance are of serious concern. However, the dissemination strategies of such ARGs are largely unknown. We tested that saprotrophic soil fungi differentially enriched antibiotic resistant bacteria (ARBs) and subsequently contributed in spatial distribution of selective ARGs. Wafergen qPCR analysis of 295 different ARGs was conducted for manure treated pre-sterilized soil incubated or not with selected bacterial-fungal consortia. The qPCR assay detected unique ARGs specifically found in the mycosphere of ascomycetous and basidiomycetous fungi. Both fungi exerted potentially different selection pressures on ARBs, resulting in different patterns of ARGs dissemination (to distant places) along their respective growing fungal highways. The relative abundance of mobile genetic elements (MGEs) was significantly decreased along fungal highways compared to the respective inoculation points. Moreover, the decrease in MGEs and ARGs (along fungal highways) was more prominent over time which depicts the continuous selection pressure of growing fungi on ARBs for enrichment of particular ARGs in mycosphere. Such data also indicate the potential role of saprotrophic soil fungi to facilitate horizontal gene transfer within mycospheric environmental settings. Our study, therefore, advocates to emphasize the future investigations for such (bacteria-fungal) interactive microbial consortia for potential (spatial) dissemination of resistance determinants which may ultimately increase the exposure risks of ARGs.


Subject(s)
Fungi , Soil Microbiology , Fungi/physiology , Bacteria/drug effects , Soil/chemistry , Drug Resistance, Microbial/genetics , Gene Transfer, Horizontal
16.
Huan Jing Ke Xue ; 45(8): 4915-4922, 2024 Aug 08.
Article in Zh | MEDLINE | ID: mdl-39168707

ABSTRACT

Microorganisms produce extracellular enzymes to meet elemental requirements and cope with stoichiometric imbalances of resources. To gain insights into the cycling of C, N, and P, the activities of the C∶N∶P acquisition enzymes have been extensively investigated. To detect the effects of long-term fertilization practices on soil nutrient balance and characteristics of soil enzymatic stoichiometry in black soil, four different fertilization treatments were selected: no fertilization (CK), nitrogen fertilizer (N), phosphorus fertilizer (P), and combination of nitrogen and phosphorus fertilizers (NP). Soil samples were collected in both April 2021 and April 2022 to determine soil enzyme activities and their stoichiometric characteristics. The results showed that soil acid phosphatase and ß-D-glucosidase activities were significantly higher in the N and NP treatments than in CK by 68%-158% and 26%-222%, respectively. Soil ß-N-acetylaminoglucosidase activities were significantly higher in the P and NP treatments, with the highest around 75.48 nmol·ï¼ˆg·h)-1 and 106.81 nmol·ï¼ˆg·h)-1, respectively. Two-way ANOVA analysis showed that N and P inputs had a great impact on soil enzyme activities. Redundancy analysis showed that the main factors controlling enzyme activities were soil pH, microbial biomass phosphorus, and soil available P content. It was found that N inputs significantly increased enzyme vector length, which was ranged from 1.32 to 1.52, and the enzyme vector angles were all larger than 45°, suggesting C and P co-limited in the black soils. These findings suggest that 40 years of fertilization have had a great impact on soil enzymes and the related resource use strategy, which provides great implications for assessing soil nutrients balance and soil sustainability.


Subject(s)
Fertilizers , Nitrogen , Phosphorus , Soil Microbiology , Soil , Soil/chemistry , Phosphorus/analysis , Acid Phosphatase/metabolism , Carbon/analysis , Time Factors , China
17.
J Cell Sci ; 124(Pt 15): 2552-60, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21730021

ABSTRACT

Neural cell adhesion molecule (NCAM) has recently been found on adult stem cells, but its biological significance remains largely unknown. In this study, we used bone-marrow-derived mesenchymal stem cells (MSCs) from wild-type and NCAM knockout mice to investigate the role of NCAM in adipocyte differentiation. It was demonstrated that NCAM isoforms 180 and 140 but not NCAM-120 are expressed on almost all wild-type MSCs. Upon adipogenic induction, Ncam(-/-) MSCs exhibited a marked decrease in adipocyte differentiation compared with wild-type cells. The role of NCAM in adipocyte differentiation was also confirmed in NCAM-silenced preadipocyte 3T3-L1 cells, which also had a phenotype with reduced adipogenic potential. In addition, we found that Ncam(-/-) MSCs appeared to be insulin resistant, as shown by their impaired insulin signaling cascade, such as the activation of the insulin-IGF-1 receptor, PI3K-Akt and CREB pathways. The PI3K-Akt inhibitor, LY294002, completely blocked adipocyte differentiation of MSCs, unveiling that the reduced adipogenic potential of Ncam(-/-) MSCs is due to insulin resistance as a result of loss of NCAM function. Furthermore, insulin resistance of Ncam(-/-) MSCs was shown to be associated with induction of tumor necrosis factor α (TNF-α), a key mediator of insulin resistance. Finally, we demonstrated that re-expression of NCAM-180, but not NCAM-140, inhibits induction of TNF-α and thereby improves insulin resistance and adipogenic potential of Ncam(-/-) MSCs. Our results suggest a novel role of NCAM in promoting insulin signaling and adipocyte differentiation of adult stem cells. These findings raise the possibility of using NCAM intervention to improve insulin resistance.


Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Cell Differentiation/physiology , Insulin/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Neural Cell Adhesion Molecules/metabolism , 3T3-L1 Cells , Animals , Blotting, Western , Cell Differentiation/genetics , Cell Line , Flow Cytometry , Immunoprecipitation , Insulin Resistance/genetics , Insulin Resistance/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Cell Adhesion Molecules/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
PeerJ ; 11: e16161, 2023.
Article in English | MEDLINE | ID: mdl-37780376

ABSTRACT

The Gram-negative non-motile Klebsiella pneuomoniae is currently a major cause of hospital-acquired (HA) and community-acquired (CA) infections, leading to great public health concern globally, while rapid identification and accurate tracing of the pathogenic bacterium is essential in facilitating monitoring and controlling of K. pneumoniae outbreak and dissemination. Multi-locus sequence typing (MLST) is a commonly used typing approach with low cost that is able to distinguish bacterial isolates based on the allelic profiles of several housekeeping genes, despite low resolution and labor intensity of the method. Core-genome MLST scheme (cgMLST) is recently proposed to sub-type and monitor outbreaks of bacterial strains with high resolution and reliability, which uses hundreds or thousands of genes conserved in all or most members of the species. However, the method is complex and requires whole genome sequencing of bacterial strains with high costs. Therefore, it is urgently needed to develop novel methods with high resolution and low cost for bacterial typing. Surface enhanced Raman spectroscopy (SERS) is a rapid, sensitive and cheap method for bacterial identification. Previous studies confirmed that classification and prediction of bacterial strains via SERS spectral analysis correlated well with MLST typing results. However, there is currently no similar comparative analysis in K. pneumoniae strains. In this pilot study, 16 K. pneumoniae strains with different sequencing typings (STs) were selected and a phylogenetic tree was constructed based on core genome analysis. SERS spectra (N = 45/each strain) were generated for all the K. pneumoniae strains, which were then comparatively classified and predicted via six representative machine learning (ML) algorithms. According to the results, SERS technique coupled with the ML algorithm support vector machine (SVM) could achieve the highest accuracy (5-Fold Cross Validation = 100%) in terms of differentiating and predicting all the K. pneumoniae strains that were consistent to corresponding MLSTs. In sum, we show in this pilot study that the SERS-SVM based method is able to accurately predict K. pneumoniae MLST types, which has the application potential in clinical settings for tracing dissemination and controlling outbreak of K. pneumoniae in hospitals and communities with low costs and high rapidity.


Subject(s)
Community-Acquired Infections , Klebsiella Infections , Humans , Klebsiella pneumoniae/genetics , Multilocus Sequence Typing , Phylogeny , Reproducibility of Results , Pilot Projects , Klebsiella Infections/diagnosis , Genome, Bacterial/genetics , Community-Acquired Infections/genetics
19.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1547-1554, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37694417

ABSTRACT

Root-associated fungi play a vital role in maintaining nutrient absorption and health of host plants. To compare the responses of root-associated fungal community structures to nitrogen (N) and/or phosphorus (P) additions across differential mycorrhizal types, we collected roots of nine plant species belonging to three mycorrhizal types (arbuscular mycorrhiza, ectomycorrhiza, and ericoid mycorrhiza) under control and N and/or P addition treatments from a subtropical forest, and detected the diversity and community composition of fungi inhabiting roots through the high-throughput sequencing technique. The results showed that root-associated fungal communities of all nine plant species were mainly composed of Basidiomycota and Ascomycota. The relative abundance of Ascomycota and Basidiomycota was significantly lower and higher under the P addition than that under control, respectively. The relative abundance of Ascomycota of ericoid mycorrhizal trees was significantly higher than those of arbuscular mycorrhizal and ectomycorrhizal trees, while the relative abundance of Basidiomycota was significantly lower than the other two mycorrhizal types. Compared with the control, P addition significantly reduced the α-diversity and changed community composition of root-associated fungi across different mycorrhizal plant types, while no effect of N addition or mycorrhizal type was observed. Compared with the control and N addition treatments, NP addition caused root-associated fungal communities of all plants becoming integrally divergent. In addition, the fungal communities of ectomycorrhizal mycorrhizal trees became apparently convergent in comparison with those of arbuscular and ericoid mycorrhizal trees under the NP addition. Collectively, our results highlighted that P was a critical factor influencing community structures of tree root-associated fungi in subtropical forest soils. This study would enhance our understanding of the responses and maintenance mechanisms of plant root-associated fungal diversity under global environmental changes in the subtropical region.


Subject(s)
Mycobiome , Mycorrhizae , Nitrogen , Forests , Trees , Phosphorus
20.
Sci Total Environ ; 863: 160986, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36528948

ABSTRACT

Soil-borne fungal pathogens pose a major threat to global agricultural production and food security. Pathogen-suppressive bacteria and plant beneficial protists are important components of soil microbiomes and essential to plant health and performance, but it remains largely unknown regarding how agricultural management practices influence the relative importance of protists and bacteria in plant disease suppression. Here, we characterized soil microbiomes (including fungi, protists, and bacteria) in bulk and sorghum rhizosphere soils with various long-term inorganic and organic fertilization regimes, and linked the changes in fungal plant pathogens with the protistan and bacterial communities. We found that the relative abundances of fungal pathogens were significantly decreased by organic fertilization regimes, and there was a significant difference in the community composition of fungal pathogens between inorganic and organic fertilization regimes. Organic fertilization significantly enhanced predatory protists but reduced the proportions of protistan phototrophs. Co-occurrence network analysis revealed more intensive connections between fungal plant pathogens with protists, especially predatory protists, than with bacterial taxa, which was further supported by stronger associations between the community structure of fungal pathogens and predatory protists. We identified more protist consumer taxa than bacterial taxa as predictors of fungal plant pathogens, and structural equation modelling revealed a more important impact of protist consumers than bacteria on fungal pathogens. Altogether, we provide new evidence that the disease inhibitory effects of long-term organic fertilization regimes could be best explained by the potential predation pressure of protists. Our findings advance the mechanistic understanding of the role of predator-prey interactions in controlling fungal diseases, and have implications for novel biocontrol strategies to mitigate the consequences of fungal infections for plant performance.


Subject(s)
Predatory Behavior , Soil , Animals , Soil/chemistry , Soil Microbiology , Eukaryota , Bacteria , Fertilization
SELECTION OF CITATIONS
SEARCH DETAIL