Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nano Lett ; 24(4): 1145-1152, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38194429

ABSTRACT

We present a novel technique of genetic transformation of bacterial cells mediated by high frequency electromagnetic energy (HF EME). Plasmid DNA, pGLO (5.4 kb), was successfully transformed into Escherichia coli JM109 cells after exposure to 18 GHz irradiation at a power density between 5.6 and 30 kW m-2 for 180 s at temperatures ranging from 30 to 40 °C. Transformed bacteria were identified by the expression of green fluorescent protein (GFP) using confocal scanning microscopy (CLSM) and flow cytometry (FC). Approximately 90.7% of HF EME treated viable E. coli cells exhibited uptake of the pGLO plasmid. The interaction of plasmid DNA with bacteria leading to transformation was confirmed by using cryogenic transmission electron microscopy (cryo-TEM). HF EME-induced plasmid DNA transformation was shown to be unique, highly efficient, and cost-effective. HF EME-induced genetic transformation is performed under physiologically friendly conditions in contrast to existing techniques that generate higher temperatures, leading to altered cellular integrity. This technique allows safe delivery of genetic material into bacterial cells, thus providing excellent prospects for applications in microbiome therapeutics and synthetic biology.


Subject(s)
Escherichia coli , Transformation, Bacterial , Plasmids/genetics , DNA/metabolism , Bacteria/genetics , Electromagnetic Radiation
2.
Opt Lett ; 49(4): 911-914, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359214

ABSTRACT

In this Letter, a method for the fabrication of bifocal lenses is presented by combining surface ablation and bulk modification in a single laser exposure followed by the wet etching processing step. The intensity of a single femtosecond laser pulse was modulated axially into two foci with a designed computer-generated hologram (CGH). Such pulse simultaneously induced an ablation region on the surface and a modified volume inside the fused silica. After etching in hydrofluoric acid (HF), the two exposed regions evolved into a bifocal lens. The area ratio (diameter) of the two lenses can be flexibly adjusted via control of the pulse energy distribution through the CGH. Besides, bifocal lenses with a center offset as well as convex lenses were obtained by a replication technique. This method simplifies the fabrication of micro-optical elements and opens a highly efficient and simple pathway for complex optical surfaces and integrated imaging systems.

3.
J Am Chem Soc ; 145(42): 23027-23036, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37824218

ABSTRACT

A two-directional ferroelastic deformation in organic crystals is unprecedented owing to its anisotropic crystal packing, in contrast to isotropic symmetrical packing in inorganic compounds and polymers. Thereby, finding and constructing multidirectional ferroelastic deformations in organic compounds is undoubtedly complex and at once calls for deep comprehension. Herein, we demonstrate the first example of a two-directional ferroelastic deformation with a unique scissor-like movement in single crystals of trans-3-hexenedioic acid by the application of uniaxial compression stress. A detailed structural investigation of the mechanical deformation at the macroscopic and microscopic levels by three distinct force measurement techniques (including shear and three-point bending test), single crystal X-ray diffraction techniques, and polarized synchrotron-FTIR microspectroscopy highlighted that mechanical twinning promoted the deformation. The presence of two crystallographically equivalent faces and the herringbone arrangement promoted the two-directional ferroelastic deformation. In addition, anisotropic heat transfer properties in the parent and the deformed domains were investigated by thermal diffusivity measurement on all three axes using microscale temperature-wave analysis (µ-TWA). A correlation between the anisotropic structural arrangement and the difference in thermal diffusivity and mechanical behavior in the two-directional organoferroelastic deformation could be established. The structural and molecular level information from this two-directional ferroelastic deformation would lead to a more profound understanding of the structure-property relationship in multidirectional deformation in organic crystals.

4.
Small ; 19(24): e2207968, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36899492

ABSTRACT

Femtosecond lasers enable flexible and thermal-damage-free ablation of solid materials and are expected to play a critical role in high-precision cutting, drilling, and shaping of electronic chips, display panels, and industrial parts. Although the potential applications are theoretically predicted, true 3D nano-sculpturing of solids such as glasses and crystals, has not yet been demonstrated, owing to the technical challenge of negative cumulative effects of surface changes and debris accumulation on the delivery of laser pulses and subsequent material removal during direct-write ablation. Here, a femtosecond laser-induced cavitation-assisted true 3D nano-sculpturing technique based on the ingenious combination of cavitation dynamics and backside ablation is proposed to achieve stable clear-field point-by-point material removal in real time for precise 3D subtractive fabrication on various difficult-to-process materials. As a result, 3D devices including free-form silica lenses, micro-statue with vivid facial features, and rotatable sapphire micro-mechanical turbine, all with surface roughness less than 10 nm are readily produced. The true 3D processing capability can immediately enable novel structural and functional micro-nano optics and non-silicon micro-electro-mechanical systems based on various hard solids.

5.
Opt Express ; 31(9): 14796-14807, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157336

ABSTRACT

Femtosecond laser-induced deep-subwavelength structures have attracted much attention as a nanoscale surface texturization technique. A better understanding of the formation conditions and period control is required. Herein, we report a method of non-reciprocal writing via a tailored optical far-field exposure, where the period of ripples varies along different scanning directions, and achieve a continuous manipulation of the period from 47 to 112 nm (±4 nm) for a 100-nm-thick indium tin oxide (ITO) on glass. A full electromagnetic model was developed to demonstrate the redistributed localized near-field at different stages of ablation with nanoscale precision. It explains the formation of ripples and the asymmetry of the focal spot determines the non-reciprocity of ripple writing. Combined with beam shaping techniques, we achieved non-reciprocal writing (regarding scanning direction) using an aperture-shaped beam. The non-reciprocal writing is expected to open new paths for precise and controllable nanoscale surface texturing.

6.
Opt Lett ; 48(6): 1379-1382, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36946932

ABSTRACT

With the rapid development of micro-optical applications, there is an increasing demand for micro-optical elements that can be made with minimal processing steps. Current research focuses on practical functionalities of optical performance, lightweight, miniaturization, and easy integration. As an important planar diffractive optical element, the Fresnel zone plate (FZP) provides a compact solution for focusing and imaging. However, the fabrication of FZPs with high quality out of hard and brittle materials remains challenging. Here, we report on the fabrication of diamond FZP by femtosecond laser direct writing. FZPs with the same outer diameter and different focal lengths of 250-1000 µm were made via ablation. The fabricated FZPs possess well-defined geometry and excellent focusing and imaging ability in the visible spectral range. Arrays of FZPs with different focal lengths were made for potential applications in imaging, sensing, and integrated optical systems.

7.
Opt Lett ; 48(11): 2841-2844, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262224

ABSTRACT

The formation mechanism of laser-induced periodic surface structures (LIPSS) has been a key to high-resolution sub-diffraction lithography or high-efficiency large-area nanotexturing. We show the evolution of LIPSS formation from a nanohole seed structure to high-spatial-frequency LIPSS by using a tightly focused and rectangular-shaped laser beam with different shape-polarization orientations. Formation of LIPSS based on light intensity distribution without invoking any long-range electromagnetic modes achieved quantitative match between modeling and experiment. Our results clearly show the entire step-like and deterministic process of LIPSS evolution based on experimental data and numerical simulations, revealing the dominant structural near-field enhancement on the ripple formation. A rectangular-shaped beam with an aspect ratio of 7:3 was used to break the symmetry of a circularly shaped focus. By azimuthally rotating the orientation of the focal spot and the polarization, it is possible to visualize the far-field effect for the initial seed structure formation and the competition between the far and near fields in the subsequent structure evolution.

8.
Proc Natl Acad Sci U S A ; 117(23): 12598-12605, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32457154

ABSTRACT

The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.


Subject(s)
Anti-Bacterial Agents/pharmacology , Nanostructures/chemistry , Stress, Mechanical , Anti-Bacterial Agents/chemistry , Bacterial Adhesion , Elasticity , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Silicon/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
9.
Nano Lett ; 22(3): 1129-1137, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35040647

ABSTRACT

Mechano-bactericidal surfaces deliver lethal effects to contacting bacteria. Until now, cell death has been attributed to the mechanical stress imparted to the bacterial cell envelope by the surface nanostructures; however, the process of bacterial death encountering nanostructured surfaces has not been fully illuminated. Here, we perform an in-depth investigation of the mechano-bactericidal action of black silicon (bSi) surfaces toward Gram-negative bacteria Pseudomonas aeruginosa. We discover that the mechanical injury is not sufficient to kill the bacteria immediately due to the survival of the inner plasma membrane. Instead, such sublethal mechanical injury leads to apoptosis-like death (ALD) in affected bacteria. In addition, when the mechanical stress is removed, the self-accumulated reactive oxygen species (ROS) incur poststress ALD in damaged cells in a nonstressed environment, revealing that the mechano-bactericidal actions have sustained physiological effects on the bacterium. This work creates a new facet and can introduce many new regulation tools to this field.


Subject(s)
Nanostructures , Pseudomonas aeruginosa , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Nanostructures/chemistry , Pseudomonas aeruginosa/physiology , Surface Properties
10.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674814

ABSTRACT

The mechano-bactericidal action of nanostructured surfaces is well-documented; however, synthetic nanostructured surfaces have not yet been explored for their antifungal properties toward filamentous fungal species. In this study, we developed a biomimetic nanostructured surface inspired by dragonfly wings. A high-aspect-ratio nanopillar topography was created on silicon (nano-Si) surfaces using inductively coupled plasma reactive ion etching (ICP RIE). To mimic the superhydrophobic nature of insect wings, the nano-Si was further functionalised with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFTS). The viability of Aspergillus brasiliensis spores, in contact with either hydrophobic or hydrophilic nano-Si surfaces, was determined using a combination of standard microbiological assays, confocal laser scanning microscopy (CLSM), and focused ion beam scanning electron microscopy (FIB-SEM). Results indicated the breakdown of the fungal spore membrane upon contact with the hydrophilic nano-Si surfaces. By contrast, hydrophobised nano-Si surfaces prevented the initial attachment of the fungal conidia. Hydrophilic nano-Si surfaces exhibited both antifungal and fungicidal properties toward attached A. brasisiensis spores via a 4-fold reduction of attached spores and approximately 9-fold reduction of viable conidia from initial solution after 24 h compared to their planar Si counterparts. Thus, we reveal, for the first time, the physical rupturing of attaching fungal spores by biomimetic hydrophilic nanostructured surfaces.


Subject(s)
Odonata , Silicon , Animals , Silicon/pharmacology , Silicon/chemistry , Spores, Fungal , Biomimetics/methods , Antifungal Agents , Surface Properties
11.
Opt Express ; 30(3): 4058-4070, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209651

ABSTRACT

Detailed spectral analysis of radiation absorption and scattering behaviors of metasurfaces was carried out via finite-difference time-domain (FDTD) photonic simulations. It revealed that, for typical metal-insulator-metal (MIM) nanodisc metasurfaces, absorbance and scattering cross-sections exhibit a ratio of σabs/σsca = 1 at the absorption peak spectral position. This relationship was likewise found to limit the attainable photo-thermal conversion efficiency in experimental and application contexts. By increasing the absorption due to optical materials, such as Cr metal nano-films typically used as an adhesion layer, it is possible to control the total absorption efficiency η = σabs/σsca and to make it the dominant extinction mechanism. This guided the design of MIM metasurfaces tailored for near-perfect-absorption and emission of thermal radiation. We present the fabrication as well as the numerical and experimental spectral characterisation of such optical surfaces.

12.
Opt Express ; 30(12): 22161-22177, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224922

ABSTRACT

We present an augmentation of Surface Plasmon (SP)-enhanced second harmonic generation (SHG) due to interference field enhancement in Au nanoprisms (AuNPs) on SiO2-coated Si substrates. The SiO2 spacer contributed for the optical interference and increased the coupling efficiency of the pump light with the SP polarization as well as a decoupling efficiency of the SHG waves from nonlinear polarization. The intensity of the SP-enhanced SHG signals increased 4.5-fold with respect to the AuNPs on the bare SiO2 substrate by setting the SiO2 spacer layer to the appropriate thickness. The numerical analysis revealed that the optimal SHG conversion was determined by the balance between the degree of the optical interference at the fundamental and SHG wavelengths.

13.
Opt Lett ; 47(1): 22-25, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34951873

ABSTRACT

We propose a high-precision method for the fabrication of variable focus convex microlens arrays on K9 glass substrate by combining femtosecond laser direct writing and hot embossing lithography. A sapphire master mold with a blind cylindrical hole array was prepared first by femtosecond laser ablation. The profile control of microlenses dependent on the temperature and the diameter of the blind hole in the sapphire mold was investigated. The curvature radius of the microlens decreased with temperature and increased with diameter. Uniform convex microlens arrays were fabricated with good imaging performance. Further, variable focus convex microlens arrays were fabricated by changing the diameter of the blind hole in sapphire, which produced the image at variable z planes. This method provides a highly precise fabrication of convex microlens arrays and is well suited for batch production of micro-optical elements.

14.
Soft Matter ; 18(28): 5194-5203, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35195649

ABSTRACT

Improving the electrical performance of macroradical epoxy thermosets to surpass the semiconductor threshold requires a comprehensive understanding of the electrical charge transport mechanisms and characteristics. In this study, we investigate the electrical properties of a non-conjugated radical thermoset in a rigid, three-dimensional (3D) motif cured under an external magnetic field. The outcomes of the four-angle analysis of the synchrotron IRM beamline provide for the first time quantitative insights into the molecular orientation at the atomic-scale level. These insights, in turn, were utilized to apply Quantum Computational modeling theories and Monte Carlo simulation to study the effect of the magnetic field-induced molecular alignment on tuning electrical charge transport characteristics. The results explored the impact of radical density on forming percolation networks, showing a robust protocol for designing polymers with high electrical/thermal conductivity.

15.
Sensors (Basel) ; 22(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36366058

ABSTRACT

The attenuated total reflection (ATR) apparatus, with an added partial reflection/partial transmission mode, was used to demonstrate a novel way of characterizing water-based substances at 0.7 to 10.0 THz at the Australian Synchrotron THz-far infrared beamline. The technique utilized a diamond-crystal-equipped ATR to track temperature-dependent changes in reflectance. A "crossover flare" feature in the spectral scan was noted, which appeared to be a characteristic of water and water-dominated compounds. A "quiet zone" feature was also seen, where no temperature-dependent variation in reflectance exists. The variation in these spectral features can be used as a signature for the presence of bound and bulk water. The method can also potentially identify the presence of fats and oils in a biological specimen. The technique requires minimal sample preparation and is non-destructive. The presented method has the promise to provide a novel, real-time, low-preparation, analytical method for investigating biological material, which offers avenues for rapid medical diagnosis and industrial analysis.


Subject(s)
Plant Oils , Synchrotrons , Spectroscopy, Fourier Transform Infrared/methods , Australia , Water
16.
Angew Chem Int Ed Engl ; 61(11): e202117227, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35029019

ABSTRACT

The ability to modulate, tune, and control fluorescence colour has attracted much attention in photonics-related research fields. Thus far, it has been impossible to achieve fluorescence colour control (FCC) for material with a fixed structure, size, surrounding medium, and concentration. Here, we propose a novel approach to FCC using optical tweezers. We demonstrate an optical trapping technique using nanotextured Si (black-Si) that can efficiently trap polymer chains. By increasing the laser intensity, the local concentration of perylene-labelled water-soluble polymer chains increased inside the trapping potential. Accordingly, the excimer fluorescence of perylene increased while the monomer fluorescence decreased, evidenced by a fluorescence colour change from blue to orange. Using nanostructure-assisted optical tweezing, we demonstrate control of the relative intensity ratio of fluorescence of the two fluorophores, thus showing remote and reversible FCC of the polymer assembly.

17.
J Synchrotron Radiat ; 28(Pt 5): 1616-1619, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34475308

ABSTRACT

The Infrared Microspectroscopy Beamline at the Australian Synchrotron is equipped with a Fourier transform infrared (FTIR) spectrometer, which is coupled with an infrared (IR) microscope and a choice of two detectors: a single-point narrow-band mercury cadmium telluride (MCT) detector and a 64 × 64 multi-pixel focal plane array (FPA) imaging detector. A scanning-based point-by-point mapping method is commonly used with a tightly focused synchrotron IR beam at the sample plane, using an MCT detector and a matching 36× IR reflecting objective and condenser (NA = 0.5), which is time consuming. In this study, the beam size at the sample plane was increased using a 15× objective and the spatio-spectral aberrations were investigated. A correlation-based semi-synthetic computational optical approach was applied to assess the possibilities of exploiting the aberrations to perform rapid imaging rather than a mapping approach.

18.
Opt Express ; 29(10): 15551-15563, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985253

ABSTRACT

Coded aperture imaging (CAI) technology is a rapidly evolving indirect imaging method with extraordinary potential. In recent years, CAI based on chaotic optical waves have been shown to exhibit multidimensional, multispectral, and multimodal imaging capabilities with a signal to noise ratio approaching the range of lens based direct imagers. However, most of the earlier studies used only narrow band illumination. In this study, CAI based on chaotic optical waves is investigated for white light illumination. A numerical study was carried out using scalar diffraction formulation and correlation optics and the lateral and axial resolving power for different spectral width were compared. A binary diffractive quasi-random lens was fabricated using electron beam lithography and the lateral and axial point spread holograms are recorded for white light. Three-dimensional imaging was demonstrated using thick objects consisting of two planes. An integrated sequence of signal processing tools such as non-linear filter, low-pass filter, median filter and correlation filter were applied to reconstruct images with an improved signal to noise ratio. A denoising deep learning neural network (DLNN) was trained using synthetic noisy images generated by the convolution of recorded point spread functions with the virtual object functions under a wide range of aberrations and noises. The trained DLNN was found to reduce further the reconstruction noises.

19.
Opt Lett ; 46(8): 1963-1966, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33857117

ABSTRACT

Herein, a vector scanning subtractive manufacturing technology is proposed to rapidly fabricate smooth micro-optical components, which is based on the vector scanning method and wet etching. Compared with the raster scanning method, the vector scanning method increases processing efficiency by nearly two orders and mitigates a buildup of stress around the laser processed region, avoiding the generation of cracks. The Letter demonstrates the fabrication of three-dimensional (3D) micro-structures with various sizes and morphologies. For example, micro-concave lenses with diameters of 20 µm to 140 µm, heights of 10 µm to 70 µm, and surface roughness of 29 nm are flexibly fabricated on sapphire by vector scanning subtractive manufacturing technology. The results indicate that the technology has broad prospects in the field of monolithic integrated 3D all-solid-state micro-optics.

20.
Small ; 16(19): e2000410, 2020 May.
Article in English | MEDLINE | ID: mdl-32309903

ABSTRACT

Nanophotonics based on resonant nanostructures and metasurfaces made of halide perovskites have become a prospective direction for efficient light manipulation at the subwavelength scale in advanced photonic designs. One of the main challenges in this field is the lack of large-scale low-cost technique for subwavelength perovskite structures fabrication preserving highly efficient luminescence. Here, unique properties of halide perovskites addressed to their extremely low thermal conductivity (lower than that of silica glass) and high defect tolerance to apply projection femtosecond laser lithography for nanofabrication with precise spatial control in all three dimensions preserving the material luminescence efficiency are employed. Namely, with CH3 NH3 PbI3 perovskite highly ordered nanoholes and nanostripes of width as small as 250 nm, metasurfaces with periods less than 400 nm, and nanowire lasers as thin as 500 nm, corresponding to the state-of-the-art in multistage expensive lithographical methods are created. Remarkable performance of the developed approach allows to demonstrate a number of advanced optical applications, including morphology-controlled photoluminescence yield, structural coloring, optical- information encryption, and lasing.

SELECTION OF CITATIONS
SEARCH DETAIL