Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Front Zool ; 7: 2, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20148102

ABSTRACT

BACKGROUND: The insecticides dichlorvos, paradichlorobenzene and naphthalene have been commonly used to eradicate pest insects from natural history collections. However, it is not known how these chemicals affect the DNA of the specimens in the collections. We thus tested the effect of dichlorvos, paradichlorobenzene and naphthalene on DNA of insects (Musca domestica) by extracting and amplifying DNA from specimens exposed to insecticides in two different concentrations over increasing time intervals. RESULTS: The results clearly show that dichlorvos impedes both extraction and amplification of mitochondrial and nuclear DNA after relatively short time, whereas paradichlorobenzene and naphthalene do not. CONCLUSION: Collections treated with paradichlorobenzene and naphthalene, are better preserved concerning DNA, than those treated with dichlorvos. Non toxic pest control methods should, however, be preferred due to physical damage of specimens and putative health risks by chemicals.

2.
PeerJ ; 8: e8225, 2020.
Article in English | MEDLINE | ID: mdl-32025365

ABSTRACT

Natural history museums are unique spaces for interdisciplinary research and educational innovation. Through extensive exhibits and public programming and by hosting rich communities of amateurs, students, and researchers at all stages of their careers, they can provide a place-based window to focus on integration of science and discovery, as well as a locus for community engagement. At the same time, like a synthesis radio telescope, when joined together through emerging digital resources, the global community of museums (the 'Global Museum') is more than the sum of its parts, allowing insights and answers to diverse biological, environmental, and societal questions at the global scale, across eons of time, and spanning vast diversity across the Tree of Life. We argue that, whereas natural history collections and museums began with a focus on describing the diversity and peculiarities of species on Earth, they are now increasingly leveraged in new ways that significantly expand their impact and relevance. These new directions include the possibility to ask new, often interdisciplinary questions in basic and applied science, such as in biomimetic design, and by contributing to solutions to climate change, global health and food security challenges. As institutions, they have long been incubators for cutting-edge research in biology while simultaneously providing core infrastructure for research on present and future societal needs. Here we explore how the intersection between pressing issues in environmental and human health and rapid technological innovation have reinforced the relevance of museum collections. We do this by providing examples as food for thought for both the broader academic community and museum scientists on the evolving role of museums. We also identify challenges to the realization of the full potential of natural history collections and the Global Museum to science and society and discuss the critical need to grow these collections. We then focus on mapping and modelling of museum data (including place-based approaches and discovery), and explore the main projects, platforms and databases enabling this growth. Finally, we aim to improve relevant protocols for the long-term storage of specimens and tissues, ensuring proper connection with tomorrow's technologies and hence further increasing the relevance of natural history museums.

3.
Cladistics ; 25(3): 211-230, 2009 Jun.
Article in English | MEDLINE | ID: mdl-34879616

ABSTRACT

Obtaining a well supported schema of phylogenetic relationships among the major groups of living organisms requires considering as much taxonomic diversity as possible, but the computational cost of calculating large phylogenies has so far been a major obstacle. We show here that the parsimony algorithms implemented in TNT can successfully process the largest phylogenetic data set ever analysed, consisting of molecular sequences and morphology for 73 060 eukaryotic taxa. The trees resulting from molecules alone display a high degree of congruence with the major taxonomic groups, with a small proportion of misplaced species; the combined data set retrieves these groups with even higher congruence. This shows that tree-calculation algorithms effectively retrieve phylogenetic history for very large data sets, and at the same time provides strong corroboration for the major eukaryotic lineages long recognized by taxonomists.

4.
Cladistics ; 18(5): 485-513, 2002 Oct.
Article in English | MEDLINE | ID: mdl-34911214

ABSTRACT

We investigated the effects of taxon sampling on phylogenetic inference by exchanging terminals in two sizes of rbcL matrices for seed plants, applying parsimony and bayesian analyses to ten 38-taxon matrices and ten 80-taxon matrices. In comparing tree topologies we concentrated on the position of the Gnetales, an important group whose placement has long been disputed. With either method, trees obtained from different taxon samples could be mutually contradictory and even disagree on groups that seemed strongly supported. Adding terminals improved the consistency of results for unweighted parsimony, but not for parsimony with third positions excluded and not for bayesian analysis, particularly when the general time-reversible model was employed. This suggests that attempting to resolve deep relationships using only a few taxa can lead to spurious conclusions, groupings unlikely to be repeatable with different taxon samplings or larger data sets. The effect of taxon sampling has not generally been recognized, and phylogenetic studies of seed plants have often been based on few taxa. Such insufficient sampling may help explain the variety of phylogenetic hypotheses for seed plants proposed in recent years. We recommend that restricted data sets such as single-gene subsets of multigene studies should be reanalyzed with alternative selections of terminals to assess topological consistency.

5.
Cladistics ; 11(4): 377-379, 1995 Dec.
Article in English | MEDLINE | ID: mdl-34920647

ABSTRACT

- Lefkovitch's formula for the probability of incompatibility between two binary characters can give incorrect results because it redundantly counts some possible compatibilities. The inaccuracy occurs when the characters have the same number of terminals showing the apomorphic state.

6.
Cladistics ; 14(2): 159-166, 1998 Jun.
Article in English | MEDLINE | ID: mdl-34902926

ABSTRACT

In Colless' (1995,Syst. Biol. 44, 102-108) results, cladograms for randomly generated matrices were strongly asymmetrical, and he used this to maintain that real cladograms provide little evidence on asymmetry of phylogeny. His position, however, depended on retaining poorly supported groups as if they were well-supported. If poorly supported groups are removed, as with parsimony jackknifing, well-structured real data can still give strong asymmetry, while random matrices simply yield unresolved trees, obviating Colless' argument.

7.
Cladistics ; 18(3): 313-323, 2002 Jun.
Article in English | MEDLINE | ID: mdl-34911252

ABSTRACT

Monophyly of the pterygote insects is generally accepted, but the relationships among the three basal branches (Odonata, Ephemeroptera and Neoptera) remain controversial. The traditional view, to separate the pterygote insects in Palaeoptera (Odonata + Ephemeroptera) and Neoptera, based on the ability or inability to fold the wings over the abdomen, has been questioned. Various authors have used different sets of morphological characters in support of all three possible arrangements of the basal pterygote branches. We sequenced 18S and 28S rDNA from 18 species of Odonata, 8 species of Ephemeroptera, 2 species of Neoptera, and 1 species of Archaeognatha in our study. The new sequences, in combination with sequences from GenBank, have been used in a parsimony jackknife analysis resulting in strong support for a monophyletic Palaeoptera. Morphological evidence and the phylogenetic implications for understanding the origin of insect flight are discussed.

8.
Cladistics ; 8(3): 275-287, 1992 Sep.
Article in English | MEDLINE | ID: mdl-34929922

ABSTRACT

Abstract- The skewness criterion of phylogenetic structure in data is too sensitive to character state frequencies, is not sensitive enough to number of characters (degree of corroboration) and relies on counts of arbitrarily-resolved bifurcating trees. For these reasons it can give misleading results. Permutation tests lack those drawbacks and can be performed quickly by using approximate parsimony calculations, but the test based on minimal tree length can imply strong structure in ambiguous data. A more satisfactory test is obtained by using a support measure which takes multiple trees into account.

9.
Cladistics ; 14(4): 303-338, 1998 Dec.
Article in English | MEDLINE | ID: mdl-34929916

ABSTRACT

Sequences of the small subunit (SSU) ribosomal RNA are considered useful for reconstructing the tree of life because this molecule is found in all organisms and is large enough not to have become saturated with multiple mutations. However, these data sets are large, difficult to align, and have extreme biases in base compositions which makes their phylogenetic signal ambiguous. Large ambiguous data sets may have many most-parsimonious trees, and finding them all may be impossible using convential phylogenetic methods. To examine the reliability of the number and relationships of eukaryotic kingdoms proposed by previous analyses of the SSU, we calculated trees from aligned sequences from eukaryotes in the Ribosomal Database Project using parsimony jackknifing which uses a resampling procedure to rapidly search large data sets for the branches that are strongly supported and eliminates poorly supported groups. Two separate analyses were carried out: an analysis in which all bases were equally weighted, and one in which transversions only were used. The parsimony jackknife procedure was able to efficiently find trees in which most major groups of eukaryotes were supported and in which some evolutionary hypotheses proposed by previous workers were tested. The relationships of these major groups to each other were largely unresolved, indicating that the SSU data, as represented in this database, is insufficient for answering questions about these deep branches. Interestingly, the analysis of transitions differs from the results of the entire data set, primarily being less resolved. This indicates that transversional mutations are important contributors to the resolved structure of the tree.

10.
Cladistics ; 12(2): 99-124, 1996 Jun.
Article in English | MEDLINE | ID: mdl-34920604

ABSTRACT

Abstract- Because they are designed to produced just one tree, neighbor-joining programs can obscure ambiguities in data. Ambiguities can be uncovered by resampling, but existing neighbor-joining programs may give misleading bootstrap frequencies because they do not suppress zero-length branches and/or are sensitive to the order of terminals in the data. A new procedure, parsimony jackknifing, overcomes these problems while running hundreds of times faster than existing programs for neighbor-joining bootstrapping. For analysis of large matrices, parsimony jackknifing is hundreds of thousands of times faster than extensive branch-swapping, yet is better able to screen out poorly-supported groups.

11.
13.
Mol Phylogenet Evol ; 40(2): 570-84, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16684611

ABSTRACT

Naidinae (former Naididae) is a group of small aquatic clitellate annelids, common worldwide. In this study, we evaluated the phylogenetic status of Naidinae, and examined the phylogenetic relationships within the group. Sequence data from two mitochondrial genes (12S rDNA and 16S rDNA), and one nuclear gene (18S rDNA), were used. Sequences were obtained from 27 naidine species, 24 species from the other tubificid subfamilies, and five outgroup taxa. New sequences (in all 108) as well as GenBank data were used. The data were analysed by parsimony and Bayesian inference. The tree topologies emanating from the different analyses are congruent to a great extent. Naidinae is not found to be monophyletic. The naidine genus Pristina appears to be a derived group within a clade consisting of several genera (Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus) from another tubificid subfamily, Rhyacodrilinae. These results demonstrate the need for a taxonomic revision: either Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus should be included within Naidinae, or Pristina should be excluded from this subfamily. Monophyly of four out of six naidine genera represented by more than one species is supported: Chaetogaster, Dero, Paranais, and Pristina, respectively.


Subject(s)
Annelida/genetics , Phylogeny , Animals , Annelida/classification , Base Sequence , DNA, Ribosomal/genetics
14.
Biol Lett ; 2(4): 543-7, 2006 Dec 22.
Article in English | MEDLINE | ID: mdl-17148284

ABSTRACT

Patterns of diversification and timing of evolution within Neoaves, which includes almost 95% of all bird species, are virtually unknown. On the other hand, molecular data consistently indicate a Cretaceous origin of many neoavian lineages and the fossil record seems to support an Early Tertiary diversification. Here, we present the first well-resolved molecular phylogeny for Neoaves, together with divergence time estimates calibrated with a large number of stratigraphically and phylogenetically well-documented fossils. Our study defines several well-supported clades within Neoaves. The calibration results suggest that Neoaves, after an initial split from Galloanseres in Mid-Cretaceous, diversified around or soon after the K/T boundary. Our results thus do not contradict palaeontological data and show that there is no solid molecular evidence for an extensive pre-Tertiary radiation of Neoaves.


Subject(s)
Birds/classification , Fossils , Phylogeny , Animals , Bayes Theorem , Birds/anatomy & histology , Birds/genetics , Classification/methods , Molecular Sequence Data , Time Factors
15.
Mol Phylogenet Evol ; 35(2): 431-41, 2005 May.
Article in English | MEDLINE | ID: mdl-15804413

ABSTRACT

The tubificid clitellates are a common component in the freshwater bottom fauna and are also the most abundant oligochaete group in marine habitats. There are over 800 described species classified in six subfamilies; Tubificinae, Limnodriloidinae, Rhyacodrilinae, Telmatodrilinae, Phallodrilinae, and Naidinae. In this study we examine the phylogenetic relationships in Tubificidae using a combination of mitochondrial 16S rDNA and nuclear 18S rDNA sequence data. Sequences were obtained from five outgroup and 56 ingroup taxa, including five of the six subfamilies of Tubificidae. The data were analysed by maximum parsimony and Bayesian inference. The resulting tree topologies are virtually without conflict. Several associations traditionally recognized within the family Tubificidae are supported, in the Bayesian analysis including a sister group relationship between Tubificinae and Limnodriloidinae. The results also indicate that Rhyacodrilinae is polyphyletic--some of its members (Heterodrilus spp.) fall into a clade with Phallodrilinae, all other groups with Naidinae. Naidinae is also polyphyletic with two rhyacodriline genera, Monopylephorus and Ainudrilus, nested within. Most of the tubificid genera included in the study are supported as monophyletic; however, Tubifex and Limnodriloides are refuted, and Tubificoides is unresolved from other tubificine taxa.


Subject(s)
Annelida/classification , Annelida/genetics , DNA, Mitochondrial/genetics , Phylogeny , Animals , Base Sequence , Bayes Theorem , DNA, Ribosomal/genetics , Gene Amplification , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics
16.
Mol Phylogenet Evol ; 22(3): 414-22, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11884166

ABSTRACT

The phylogeny of the Tubificidae, and of most of its subfamilies and some of its genera, is revisited, on the basis of sequences of 18S ribosomal DNA in a selection of species. Forty-six new 18S sequences of Naididae (6), Tubificidae (37), Phreodrilidae (1), Lumbriculidae (1), and Enchytraeidae (1) are reported and aligned together with corresponding sequences of 21 previously studied taxa. The 18S gene of Insulodrilus bifidus provides the first molecular evidence that phreodrilids are closely related to tubificids, corroborating previous conclusions based on morphology. The data further support the monophyletic status of Tubificidae, provided that the "Naididae" is regarded a part of this family; "naidids" may not even constitute a monophyletic group. It is thus suggested that the family name Naididae is formally suppressed as a junior synonym of the Tubificidae. The 18S gene also resolves a number of relationships within the tubificids. Among the subfamilies, Tubificinae is supported, Rhyacodrilinae and Phallodrilinae are revealed as nonmonophyletic, and Limnodriloidinae remains unresolved. Most tubificid genera tested for monophyly are corroborated by the data, only one (Tubifex) is refuted, and two (Tubificoides and Limnodriloides) are unresolved from other taxa. It is concluded that it will be valuable to expand the taxonomic sampling for 18S rDNA in clitellates, and in annelids in general, as this is likely to improve the resolution at many levels. However, it will be equally important to combine the annelid 18S data with other gene sequences and nonmolecular characters, to estimate the phylogeny of these common and diverse worms with greater precision.


Subject(s)
Oligochaeta/genetics , Phylogeny , RNA, Ribosomal, 18S/genetics , Animals , DNA/chemistry , DNA/genetics , Molecular Sequence Data , Oligochaeta/classification , Sequence Analysis, DNA
17.
Am J Bot ; 89(4): 677-87, 2002 Apr.
Article in English | MEDLINE | ID: mdl-21665668

ABSTRACT

Phylogenetic interrelationships in the enlarged order Ericales were investigated by jackknife analysis of a combination of DNA sequences from the plastid genes rbcL, ndhF, atpB, and the mitochondrial genes atp1 and matR. Several well-supported groups were identified, but neither a combination of all gene sequences nor any one alone fully resolved the relationships between all major clades in Ericales. All investigated families except Theaceae were found to be monophyletic. Four families, Marcgraviaceae, Balsaminaceae, Pellicieraceae, and Tetrameristaceae form a monophyletic group that is the sister of the remaining families. On the next higher level, Fouquieriaceae and Polemoniaceae form a clade that is sister to the majority of families that form a group with eight supported clades between which the interrelationships are unresolved: Theaceae-Ternstroemioideae with Ficalhoa, Sladenia, and Pentaphylacaceae; Theaceae-Theoideae; Ebenaceae and Lissocarpaceae; Symplocaceae; Maesaceae, Theophrastaceae, Primulaceae, and Myrsinaceae; Styracaceae and Diapensiaceae; Lecythidaceae and Sapotaceae; Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae, and Ericaceae.

18.
Mol Phylogenet Evol ; 24(2): 274-301, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12144762

ABSTRACT

Asterids comprise 1/4-1/3 of all flowering plants and are classified in 10 orders and >100 families. The phylogeny of asterids is here explored with jackknife parsimony analysis of chloroplast DNA from 132 genera representing 103 families and all higher groups of asterids. Six different markers were used, three of the markers represent protein coding genes, rbcL, ndhF, and matK, and three other represent non-coding DNA; a region including trnL exons and the intron and intergenic spacers between trnT (UGU) to trnF (GAA); another region including trnV exons and intron, trnM and intergenic spacers between trnV (UAC) and atpE, and the rps16 intron. The three non-coding markers proved almost equally useful as the three coding genes in phylogenetic reconstruction at the high level of orders and families in asterids, and in relation to the number of aligned positions the non-coding markers were even more effective. Basal interrelationships among Cornales, Ericales, lamiids (new name replacing euasterids I), and campanulids (new name replacing euasterids II) are resolved with strong support. Family interrelationships are fully or almost fully resolved with medium to strong support in Cornales, Garryales, Gentianales, Solanales, Aquifoliales, Apiales, and Dipsacales. Within the three large orders Ericales, Lamiales, and Asterales, family interrelationships remain partly unclear. The analysis has contributed to reclassification of several families, e.g., Tetrameristaceae, Ebenaceae, Styracaceae, Montiniaceae, Orobanchaceae, and Scrophulariaceae (by inclusion of Pellicieraceae, Lissocarpaceae, Halesiaceae, Kaliphoraceae, Cyclocheilaceae, and Myoporaceae+Buddlejaceae, respectively), and to the placement of families that were unplaced in the APG-system, e.g., Sladeniaceae, Pentaphylacaceae, Plocospermataceae, Cardiopteridaceae, and Adoxaceae (in Ericales, Ericales, Lamiales, Aquifoliales, and Dipsacales, respectively), and Paracryphiaceae among campanulids. Several families of euasterids remain unclassified to order.


Subject(s)
Chloroplasts/genetics , DNA, Intergenic , Magnoliopsida/classification , Magnoliopsida/physiology , Phylogeny , Plant Proteins , DNA, Plant , Endoribonucleases/genetics , Exons , Genetic Markers , Models, Biological , NADH Dehydrogenase/genetics , Nucleotidyltransferases/genetics , RNA, Transfer/genetics , RNA, Transfer, Met , Ribulose-Bisphosphate Carboxylase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL