Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Magn Reson Chem ; 48 Suppl 1: S2-10, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20821407

ABSTRACT

The hyperfine A-tensor and Zeeman g-tensor parameterize the interaction of an 'effective' electron spin with the magnetic field due to the nuclear spin and the homogeneous external magnetic field, respectively. The A- and g-tensors are the quantities of primary interest in electron paramagnetic resonance (EPR) spectroscopy. In this paper, we review our work [E.S. Kadantsev, T. Ziegler, J. Phys. Chem. A 2008, 112, 4521; E. S. Kadantsev, T. Ziegler, J. Phys. Chem. A 2009, 113, 1327] on the calculation of these EPR parameters under periodic boundary conditions (PBC) from first-principles. Our methodology is based on the Kohn-Sham DFT (KS DFT), explicit usage of Bloch basis set made up of numerical and Slater-type atomic orbitals (NAOs/STOs), and is implemented in the 'full potential' program BAND. Our implementation does not rely on the frozen core approximation. The NAOs/STOs basis is well suited for the accurate representation of the electron density near the nuclei, a prerequisite for the calculation of highly accurate hyperfine parameters. In the case of g-tensor, our implementation is based on the method of Van Lenthe et al. [E. van Lenthe, P. E. S. Wormer, A. van der Avoird, J. Chem. Phys. 1997, 107, 2488] in which the spin-orbital coupling is taken into account variationally. We demonstrate the viability of our scheme by calculating EPR parameters of paramagnetic defects in solids. We consider the A-tensor of 'normal' and 'anomalous' muonium defect in IIIA-VA semiconductors as well as the S2 anion radical in KCl host crystal lattice.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Quantum Theory , Magnetics , Semiconductors
2.
J Phys Chem A ; 113(7): 1327-34, 2009 Feb 19.
Article in English | MEDLINE | ID: mdl-19173640

ABSTRACT

The Zeeman g-tensor parameterizes the interaction of an effective electronic spin with the homogeneous external magnetic field in the electron paramagnetic resonance (EPR) experiment. In this article, we describe a Kohn-Sham DFT (KS DFT)-based implementation of the g-tensor for periodic systems. Our implementation can be used, for example, for the first-principles calculation of a g-tensor of paramagnetic defects in solids. Our approach is based on the method of Van Lenthe et al. in which the spin-orbital coupling is taken into account variationally. The method is implemented in the BAND program, a KS DFT implementation for periodic systems. The Bloch states are expanded in the basis of numerical and Slater-type atomic orbitals (NAOs/STOs). Our implementation does not rely on the frozen core approximation tacitly assumed in the pseudopotential schemes. The implementation is validated by calculating the g-tensor for small molecules as well as for paramagnetic defects in solids. In particular, we consider ozonide and hydrogen cyanide anion radicals in a KCl host crystal lattice.

3.
J Phys Chem A ; 112(19): 4521-6, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18412322

ABSTRACT

The A-tensor parameterizes the "hyperfine" interaction of an "effective" electronic spin with the magnetic field due to the nuclear spin as monitored in an electron paramagnetic resonance (EPR) experiment. In this account, we describe an implementation for the calculation of the A-tensor in systems with translational invariance based on the Kohn-Sham form of density functional theory (KS DFT). The method is implemented in the periodic program BAND, where the Bloch states are expanded in the basis of numerical and Slater-type atomic orbitals (NAOs/STOs). This basis is well-suited for the accurate representation of the electron density near the nuclei, a prerequisite for the calculation of highly accurate hyperfine parameters. Our implementation does not rely on the frozen core approximation tacitly assumed in the pseudopotential schemes. The implementation is validated by performing calculations on the A-tensor for small atoms and molecules within the supercell approach as well as for paramagnetic defects in solids. In particular, we consider the A-tensor of "normal" and "anomalous" muonium defects in diamond and of the hydrogen cyanide anion radical HCN(-) in a KCl host crystal lattice.

4.
Chem Commun (Camb) ; 50(40): 5333-5, 2014 May 25.
Article in English | MEDLINE | ID: mdl-24162794

ABSTRACT

A cubic metal-organic framework with an unprecedented octanuclear secondary building unit (SBU) was isolated. The obtained SBU is composed of 8 Co(II) ions at each vertex, 6 µ4-OH groups at each face, and 12 cpt(-) ligands framing the metal core. The cuboctahedra arrange in a ubt framework topology, eliciting a highly symmetrical MOF structure. Magnetic measurements as well as DFT calculations on this crystalline MOF reveal intramolecular antiferromagnetic coupling between Co(II) ions in the octanuclear SBU.


Subject(s)
Cobalt/chemistry , Magnetics , Organometallic Compounds/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Surface Properties
5.
J Chem Theory Comput ; 6(5): 1650-9, 2010 May 11.
Article in English | MEDLINE | ID: mdl-26615697

ABSTRACT

We present here a method that can calculate NMR shielding tensors from first principles for systems with translational invariance. Our approach is based on Kohn-Sham density functional theory and gauge-including atomic orbitals. Our scheme determines the shielding tensor as the second derivative of the total electronic energy with respect to an external magnetic field and a nuclear magnetic moment. The induced current density due to a periodic perturbation from nuclear magnetic moments is obtained through numerical differentiation, whereas the influence of the responding perturbation in terms of the external magnetic field is evaluated analytically. The method is implemented into the periodic program BAND. It employs a Bloch basis set made up of Slater-type or numeric atomic orbitals and represents the Kohn-Sham potential fully without the use of effective core potentials. Results from calculations of NMR shielding constants based on the present approach are presented for isolated molecules as well as systems with one-, two- and three-dimensional periodicity. The reported values are compared to experiment and results from calculations on cluster models.

6.
J Chem Phys ; 124(13): 134901, 2006 Apr 07.
Article in English | MEDLINE | ID: mdl-16613471

ABSTRACT

Oligoacenes C(4n+2)H(2n+4) (n=2,...,6) are studied using a variety of ab initio methods. Density functional theory (DFT) optimized geometries were in good agreement with experiment. Vertical and adiabatic ionization potentials and electron affinities were computed with DFT and it was found that standard exchange-correlation (xc) functionals underestimate ionization potentials in oligoacenes. Possible reasons for this underestimation are discussed. Low lying electronic excitations were computed using time-dependent density functional theory, configuration interaction singles, and configuration interaction singles with approximate treatment of doubles. In agreement with earlier work, time-dependent DFT in conjunction with standard xc-energy functionals substantially underestimates the lowest (p) singlet-singlet electronic transition.

SELECTION OF CITATIONS
SEARCH DETAIL