Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 348
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(3): 827-839.e14, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33545036

ABSTRACT

Ahmed and colleagues recently described a novel hybrid lymphocyte expressing both a B and T cell receptor, termed double expresser (DE) cells. DE cells in blood of type 1 diabetes (T1D) subjects were present at increased numbers and enriched for a public B cell clonotype. Here, we attempted to reproduce these findings. While we could identify DE cells by flow cytometry, we found no association between DE cell frequency and T1D status. We were unable to identify the reported public B cell clone, or any similar clone, in bulk B cells or sorted DE cells from T1D subjects or controls. We also did not observe increased usage of the public clone VH or DH genes in B cells or in sorted DE cells. Taken together, our findings suggest that DE cells and their alleged public clonotype are not enriched in T1D. This Matters Arising paper is in response to Ahmed et al. (2019), published in Cell. See also the response by Ahmed et al. (2021), published in this issue.


Subject(s)
Diabetes Mellitus, Type 1 , B-Lymphocytes , Clone Cells , Diabetes Mellitus, Type 1/genetics , Flow Cytometry , Humans , Receptors, Antigen, T-Cell
2.
Immunity ; 52(2): 257-274.e11, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32049053

ABSTRACT

Genetics is a major determinant of susceptibility to autoimmune disorders. Here, we examined whether genome organization provides resilience or susceptibility to sequence variations, and how this would contribute to the molecular etiology of an autoimmune disease. We generated high-resolution maps of linear and 3D genome organization in thymocytes of NOD mice, a model of type 1 diabetes (T1D), and the diabetes-resistant C57BL/6 mice. Multi-enhancer interactions formed at genomic regions harboring genes with prominent roles in T cell development in both strains. However, diabetes risk-conferring loci coalesced enhancers and promoters in NOD, but not C57BL/6 thymocytes. 3D genome mapping of NODxC57BL/6 F1 thymocytes revealed that genomic misfolding in NOD mice is mediated in cis. Moreover, immune cells infiltrating the pancreas of humans with T1D exhibited increased expression of genes located on misfolded loci in mice. Thus, genetic variation leads to altered 3D chromatin architecture and associated changes in gene expression that may underlie autoimmune pathology.


Subject(s)
Chromatin/metabolism , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease/genetics , Thymocytes/pathology , Animals , CCCTC-Binding Factor/metabolism , Chromosome Mapping , Diabetes Mellitus, Type 1/pathology , Epigenesis, Genetic , Gene Expression , Genetic Loci/genetics , Genetic Variation , Genome/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Pancreas/pathology , Regulatory Sequences, Nucleic Acid
3.
Nature ; 605(7908): 160-165, 2022 05.
Article in English | MEDLINE | ID: mdl-35477756

ABSTRACT

Colorectal cancer (CRC) is among the most frequent forms of cancer, and new strategies for its prevention and therapy are urgently needed1. Here we identify a metabolite signalling pathway that provides actionable insights towards this goal. We perform a dietary screen in autochthonous animal models of CRC and find that ketogenic diets exhibit a strong tumour-inhibitory effect. These properties of ketogenic diets are recapitulated by the ketone body ß-hydroxybutyrate (BHB), which reduces the proliferation of colonic crypt cells and potently suppresses intestinal tumour growth. We find that BHB acts through the surface receptor Hcar2 and induces the transcriptional regulator Hopx, thereby altering gene expression and inhibiting cell proliferation. Cancer organoid assays and single-cell RNA sequencing of biopsies from patients with CRC provide evidence that elevated BHB levels and active HOPX are associated with reduced intestinal epithelial proliferation in humans. This study thus identifies a BHB-triggered pathway regulating intestinal tumorigenesis and indicates that oral or systemic interventions with a single metabolite may complement current prevention and treatment strategies for CRC.


Subject(s)
Colorectal Neoplasms , Signal Transduction , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Animals , Cell Proliferation , Cell Transformation, Neoplastic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/prevention & control , Humans
4.
Genes Dev ; 34(15-16): 1039-1050, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32561546

ABSTRACT

The FoxA transcription factors are critical for liver development through their pioneering activity, which initiates a highly complex regulatory network thought to become progressively resistant to the loss of any individual hepatic transcription factor via mutual redundancy. To investigate the dispensability of FoxA factors for maintaining this regulatory network, we ablated all FoxA genes in the adult mouse liver. Remarkably, loss of FoxA caused rapid and massive reduction in the expression of critical liver genes. Activity of these genes was reduced back to the low levels of the fetal prehepatic endoderm stage, leading to necrosis and lethality within days. Mechanistically, we found FoxA proteins to be required for maintaining enhancer activity, chromatin accessibility, nucleosome positioning, and binding of HNF4α. Thus, the FoxA factors act continuously, guarding hepatic enhancer activity throughout adult life.


Subject(s)
Forkhead Transcription Factors/physiology , Gene Regulatory Networks , Liver/metabolism , Animals , Binding Sites , Chromatin/metabolism , Enhancer Elements, Genetic , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-gamma/genetics , Hepatocyte Nuclear Factor 4/metabolism , Liver/pathology , Liver Failure/etiology , Liver Failure/pathology , Male , Mice , Nucleosomes
5.
Genes Dev ; 34(13-14): 973-988, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32467224

ABSTRACT

Chromatin modifiers play critical roles in epidermal development, but the functions of histone deacetylases in this context are poorly understood. The class I HDAC, HDAC3, is of particular interest because it plays divergent roles in different tissues by partnering with tissue-specific transcription factors. We found that HDAC3 is expressed broadly in embryonic epidermis and is required for its orderly stepwise stratification. HDAC3 protein stability in vivo relies on NCoR and SMRT, which function redundantly in epidermal development. However, point mutations in the NCoR and SMRT deacetylase-activating domains, which are required for HDAC3's enzymatic function, permit normal stratification, indicating that HDAC3's roles in this context are largely independent of its histone deacetylase activity. HDAC3-bound sites are significantly enriched for predicted binding motifs for critical epidermal transcription factors including AP1, GRHL, and KLF family members. Our results suggest that among these, HDAC3 operates in conjunction with KLF4 to repress inappropriate expression of Tgm1, Krt16, and Aqp3 In parallel, HDAC3 suppresses expression of inflammatory cytokines through a Rela-dependent mechanism. These data identify HDAC3 as a hub coordinating multiple aspects of epidermal barrier acquisition.


Subject(s)
Cell Differentiation/genetics , Epidermal Cells/cytology , Epidermis/embryology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Animals , Embryo, Mammalian , Gene Deletion , Gene Expression Regulation, Developmental , Genes, Lethal/genetics , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Inbred C57BL , Mutation , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 2/genetics , Nuclear Receptor Co-Repressor 2/metabolism , Protein Interaction Domains and Motifs/genetics , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
6.
Cell ; 148(1-2): 72-83, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22265403

ABSTRACT

Hepatocellular carcinoma (HCC) is sexually dimorphic in both rodents and humans, with significantly higher incidence in males, an effect that is dependent on sex hormones. The molecular mechanisms by which estrogens prevent and androgens promote liver cancer remain unclear. Here, we discover that sexually dimorphic HCC is completely reversed in Foxa1- and Foxa2-deficient mice after diethylnitrosamine-induced hepatocarcinogenesis. Coregulation of target genes by Foxa1/a2 and either the estrogen receptor (ERα) or the androgen receptor (AR) was increased during hepatocarcinogenesis in normal female or male mice, respectively, but was lost in Foxa1/2-deficient mice. Thus, both estrogen-dependent resistance to and androgen-mediated facilitation of HCC depend on Foxa1/2. Strikingly, single nucleotide polymorphisms at FOXA2 binding sites reduce binding of both FOXA2 and ERα to their targets in human liver and correlate with HCC development in women. Thus, Foxa factors and their targets are central for the sexual dimorphism of HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Liver Neoplasms/metabolism , Androgens/metabolism , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/pathology , Estrogens/metabolism , Female , Humans , Liver Neoplasms/epidemiology , Liver Neoplasms/pathology , Male , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Sex Factors , Signal Transduction
7.
Cell ; 151(7): 1608-16, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23260146

ABSTRACT

Nucleosome occupancy is fundamental for establishing chromatin architecture. However, little is known about the relationship between nucleosome dynamics and initial cell lineage specification. Here, we determine the mechanisms that control global nucleosome dynamics during embryonic stem (ES) cell differentiation into endoderm. Both nucleosome depletion and de novo occupation occur during the differentiation process, with higher overall nucleosome density after differentiation. The variant histone H2A.Z and the winged helix transcription factor Foxa2 both act to regulate nucleosome depletion and gene activation, thus promoting ES cell differentiation, whereas DNA methylation promotes nucleosome occupation and suppresses gene expression. Nucleosome depletion during ES cell differentiation is dependent on Nap1l1-coupled SWI/SNF and INO80 chromatin remodeling complexes. Thus, both epigenetic and genetic regulators cooperate to control nucleosome dynamics during ES cell fate decisions.


Subject(s)
Cell Differentiation , Chromatin Assembly and Disassembly , Embryonic Stem Cells/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Histones/metabolism , Nucleosomes/metabolism , Animals , Chromatin Immunoprecipitation , DNA Methylation , Embryonic Stem Cells/cytology , Histones/genetics , Mice
8.
Dev Biol ; 504: 120-127, 2023 12.
Article in English | MEDLINE | ID: mdl-37813160

ABSTRACT

The current gold-standard for genetic lineage tracing in transgenic mice is based on cell-type specific expression of Cre recombinase. As an alternative, we developed a cell-type specific CRISPR/spCas9 system for lineage tracing. This method relies on RNA polymerase II promoter driven self-cleaving guide RNAs (scgRNA) to achieve tissue-specificity. To demonstrate proof-of-principle for this approach a transgenic mouse was generated harbouring a knock-in of a scgRNA into the Cytokeratin 14 (Krt14) locus. Krt14 expression marks the stem cells of squamous epithelium in the skin and oral mucosa. The scgRNA targets a Stop cassette preceding a fluorescent reporter in the Ai9-tdtomato mouse. Ai9-tdtomato reporter mice harbouring this allele along with a spCas9 transgene demonstrated precise marking of the Krt14 lineage. We conclude that RNA polymerase II promoter driven scgRNAs enable the use of CRISPR/spCas9 for genetic lineage tracing.


Subject(s)
CRISPR-Cas Systems , RNA Polymerase II , Animals , Mice , CRISPR-Cas Systems/genetics , Integrases/genetics , Keratin-14/genetics , Keratin-14/metabolism , Mice, Transgenic , Promoter Regions, Genetic/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
9.
Nature ; 560(7718): E29, 2018 08.
Article in English | MEDLINE | ID: mdl-29977061

ABSTRACT

Change history: In this Letter, the surname of author Efi E. Massasa was misspelled 'Massassa'. This error has been corrected online.

10.
Nature ; 557(7704): 242-246, 2018 05.
Article in English | MEDLINE | ID: mdl-29720649

ABSTRACT

Tissues that undergo rapid cellular turnover, such as the mammalian haematopoietic system or the intestinal epithelium, are dependent on stem and progenitor cells that proliferate to provide differentiated cells to maintain organismal health. Stem and progenitor cells, in turn, are thought to rely on signals and growth factors provided by local niche cells to support their function and self-renewal. Several cell types have been hypothesized to provide the signals required for the proliferation and differentiation of the intestinal stem cells in intestinal crypts1-6. Here we identify subepithelial telocytes as an important source of Wnt proteins, without which intestinal stem cells cannot proliferate and support epithelial renewal. Telocytes are large but rare mesenchymal cells that are marked by expression of FOXL1 and form a subepithelial plexus that extends from the stomach to the colon. While supporting the entire epithelium, FOXL1+ telocytes compartmentalize the production of Wnt ligands and inhibitors to enable localized pathway activation. Conditional genetic ablation of porcupine (Porcn), which is required for functional maturation of all Wnt proteins, in mouse FOXL1+ telocytes causes rapid cessation of Wnt signalling to intestinal crypts, followed by loss of proliferation of stem and transit amplifying cells and impaired epithelial renewal. Thus, FOXL1+ telocytes are an important source of niche signals to intestinal stem cells.


Subject(s)
Cell Self Renewal , Intestinal Mucosa/cytology , Telocytes/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Acyltransferases/deficiency , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Cell Proliferation , Forkhead Transcription Factors/metabolism , Ligands , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism
11.
Mol Cell ; 62(1): 79-91, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27058788

ABSTRACT

Nuclear DNA wraps around core histones to form nucleosomes, which restricts the binding of transcription factors to gene regulatory sequences. Pioneer transcription factors can bind DNA sites on nucleosomes and initiate gene regulatory events, often leading to the local opening of chromatin. However, the nucleosomal configuration of open chromatin and the basis for its regulation is unclear. We combined low and high levels of micrococcal nuclease (MNase) digestion along with core histone mapping to assess the nucleosomal configuration at enhancers and promoters in mouse liver. We find that MNase-accessible nucleosomes, bound by transcription factors, are retained more at liver-specific enhancers than at promoters and ubiquitous enhancers. The pioneer factor FoxA displaces linker histone H1, thereby keeping enhancer nucleosomes accessible in chromatin and allowing other liver-specific transcription factors to bind and stimulate transcription. Thus, nucleosomes are not exclusively repressive to gene regulation when they are retained with, and exposed by, pioneer factors.


Subject(s)
Enhancer Elements, Genetic , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-gamma/metabolism , Nucleosomes/metabolism , Animals , Histones/metabolism , Liver/metabolism , Mice , Nucleosomes/genetics , Organ Specificity , Promoter Regions, Genetic , Transcription, Genetic
12.
Genes Dev ; 30(21): 2433-2442, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27856615

ABSTRACT

Methylated cytosines are associated with gene silencing. The ten-eleven translocation (TET) hydroxylases, which oxidize methylated cytosines to 5-hydroxymethylcytosine (5hmC), are essential for cytosine demethylation. Gene silencing and activation are critical for intestinal stem cell (ISC) maintenance and differentiation, but the potential role of TET hydroxylases in these processes has not yet been examined. Here, we generated genome-wide maps of the 5hmC mark in ISCs and their differentiated progeny. Genes with high levels of hydroxymethylation in ISCs are strongly associated with Wnt signaling and developmental processes. We found Tet1 to be the most abundantly expressed Tet gene in ISCs; therefore, we analyzed intestinal development in Tet1-deficient mice and determined that these mice are growth-retarded, exhibit partial postnatal lethality, and have significantly reduced numbers of proliferative cells in the intestinal epithelium. In addition, the Tet1-deficient intestine displays reduced organoid-forming capacity. In the Tet1-deficient crypt, decreased expression of Wnt target genes such as Axin2 and Lgr5 correlates with lower 5hmC levels at their promoters. These data demonstrate that Tet1-mediated DNA hydroxymethylation plays a critical role in the epigenetic regulation of the Wnt pathway in intestinal stem and progenitor cells and consequently in the self-renewal of the intestinal epithelium.


Subject(s)
DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Developmental/genetics , Intestines/growth & development , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Stem Cells/physiology , Animals , Cell Differentiation/genetics , Cells, Cultured , Intestines/cytology , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/genetics , Sequence Deletion , Stem Cells/cytology , Wnt Signaling Pathway/genetics
13.
Nature ; 550(7676): 402-406, 2017 10 19.
Article in English | MEDLINE | ID: mdl-28976970

ABSTRACT

Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders.


Subject(s)
Cellular Senescence/genetics , Chromatin/metabolism , Cytoplasm/genetics , Immunity, Innate , Inflammation/genetics , Inflammation/pathology , Neoplasms/genetics , Neoplasms/immunology , Animals , Cell Line, Tumor , Chromatin/immunology , Cytokines/immunology , Cytokines/metabolism , Cytoplasm/immunology , Female , Humans , Inflammation/immunology , Liver/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Neoplasms/pathology , Nucleotidyltransferases/metabolism , Oncogene Protein p21(ras)/genetics , Oncogene Protein p21(ras)/immunology , Radiation, Ionizing
14.
Proc Natl Acad Sci U S A ; 117(29): 17177-17186, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32631996

ABSTRACT

Hepatocyte nuclear factor 4α (HNF4α) is a master regulator of liver function and a tumor suppressor in hepatocellular carcinoma (HCC). In this study, we explore the reciprocal negative regulation of HNF4α and cyclin D1, a key cell cycle protein in the liver. Transcriptomic analysis of cultured hepatocyte and HCC cells found that cyclin D1 knockdown induced the expression of a large network of HNF4α-regulated genes. Chromatin immunoprecipitation-sequencing (ChIP-seq) demonstrated that cyclin D1 inhibits the binding of HNF4α to thousands of targets in the liver, thereby diminishing the expression of associated genes that regulate diverse metabolic activities. Conversely, acute HNF4α deletion in the liver induces cyclin D1 and hepatocyte cell cycle progression; concurrent cyclin D1 ablation blocked this proliferation, suggesting that HNF4α maintains proliferative quiescence in the liver, at least, in part, via repression of cyclin D1. Acute cyclin D1 deletion in the regenerating liver markedly inhibited hepatocyte proliferation after partial hepatectomy, confirming its pivotal role in cell cycle progression in this in vivo model, and enhanced the expression of HNF4α target proteins. Hepatocyte cyclin D1 gene ablation caused markedly increased postprandial liver glycogen levels (in a HNF4α-dependent fashion), indicating that the cyclin D1-HNF4α axis regulates glucose metabolism in response to feeding. In AML12 hepatocytes, cyclin D1 depletion led to increased glucose uptake, which was negated if HNF4α was depleted simultaneously, and markedly elevated glycogen synthesis. To summarize, mutual repression by cyclin D1 and HNF4α coordinately controls the cell cycle machinery and metabolism in the liver.


Subject(s)
Cell Cycle/physiology , Cyclin D1/genetics , Cyclin D1/metabolism , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Liver/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Female , Gene Knockdown Techniques , Hepatocytes/metabolism , Hepatocytes/pathology , Liver Regeneration/genetics , Liver Regeneration/physiology , Male , Mice, Inbred BALB C , Mice, Knockout
15.
Genes Dev ; 29(9): 904-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25934503

ABSTRACT

The fundamental question of which genes are most important in controlling liver regeneration remains unanswered. We employed a parallel screen to test the impact of 43 selected genes on liver repopulation in the Fah(-/-) mouse model of hereditary tyrosinemia. We discovered that the transcription factor Foxa3 was a strong promoter of liver regeneration, while tumor necrosis factor receptor 1 (TNFR1) was the most significant suppressor of repopulation among all of the genes tested. Our approach enabled the identification of these factors as important regulators of liver repopulation and potential drug targets for the promotion of liver repopulation.


Subject(s)
Hepatocyte Nuclear Factor 3-gamma/metabolism , Liver Regeneration/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Animals , Disease Models, Animal , Genetic Testing , Hepatocyte Nuclear Factor 3-gamma/genetics , Hepatocytes/cytology , Mice , Receptors, Tumor Necrosis Factor, Type I/genetics
16.
Diabetologia ; 65(8): 1375-1389, 2022 08.
Article in English | MEDLINE | ID: mdl-35652923

ABSTRACT

AIMS/HYPOTHESIS: Type 2 diabetes is characterised by hyperglucagonaemia and perturbed function of pancreatic glucagon-secreting alpha cells but the molecular mechanisms contributing to these phenotypes are poorly understood. Insulin-degrading enzyme (IDE) is present within all islet cells, mostly in alpha cells, in both mice and humans. Furthermore, IDE can degrade glucagon as well as insulin, suggesting that IDE may play an important role in alpha cell function in vivo. METHODS: We have generated and characterised a novel mouse model with alpha cell-specific deletion of Ide, the A-IDE-KO mouse line. Glucose metabolism and glucagon secretion in vivo was characterised; isolated islets were tested for glucagon and insulin secretion; alpha cell mass, alpha cell proliferation and α-synuclein levels were determined in pancreas sections by immunostaining. RESULTS: Targeted deletion of Ide exclusively in alpha cells triggers hyperglucagonaemia and alpha cell hyperplasia, resulting in elevated constitutive glucagon secretion. The hyperglucagonaemia is attributable in part to dysregulation of glucagon secretion, specifically an impaired ability of IDE-deficient alpha cells to suppress glucagon release in the presence of high glucose or insulin. IDE deficiency also leads to α-synuclein aggregation in alpha cells, which may contribute to impaired glucagon secretion via cytoskeletal dysfunction. We showed further that IDE deficiency triggers impairments in cilia formation, inducing alpha cell hyperplasia and possibly also contributing to dysregulated glucagon secretion and hyperglucagonaemia. CONCLUSIONS/INTERPRETATION: We propose that loss of IDE function in alpha cells contributes to hyperglucagonaemia in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Secreting Cells , Insulin-Secreting Cells , Insulysin , Animals , Cell Proliferation/genetics , Diabetes Mellitus, Type 2/metabolism , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Hyperplasia/genetics , Hyperplasia/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulysin/genetics , Insulysin/metabolism , Mice , alpha-Synuclein/metabolism
17.
J Hepatol ; 77(6): 1631-1641, 2022 12.
Article in English | MEDLINE | ID: mdl-35988690

ABSTRACT

BACKGROUND & AIMS: Primary liver cancers include hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA) and combined HCC-CCA tumors (cHCC-CCA). It has been suggested, but not unequivocally proven, that hepatic progenitor cells (HPCs) can contribute to hepatocarcinogenesis. We aimed to determine whether HPCs contribute to HCC, cHCC-CCA or both types of tumors. METHODS: To trace progenitor cells during hepatocarcinogenesis, we generated Mdr2-KO mice that harbor a yellow fluorescent protein (YFP) reporter gene driven by the Foxl1 promoter which is expressed specifically in progenitor cells. These mice (Mdr2-KOFoxl1-CRE;RosaYFP) develop chronic inflammation and HCCs by the age of 14-16 months, followed by cHCC-CCA tumors at the age of 18 months. RESULTS: In this Mdr2-KOFoxl1-CRE;RosaYFP mouse model, liver progenitor cells are the source of cHCC-CCA tumors, but not the source of HCC. Ablating the progenitors, caused reduction of cHCC-CCA tumors but did not affect HCCs. RNA-sequencing revealed enrichment of the IL-6 signaling pathway in cHCC-CCA tumors compared to HCC tumors. Single-cell RNA-sequencing (scRNA-seq) analysis revealed that IL-6 is expressed by immune and parenchymal cells during senescence, and that IL-6 is part of the senescence-associated secretory phenotype. Administration of an anti-IL-6 antibody to Mdr2-KOFoxl1-CRE;RosaYFP mice inhibited the development of cHCC-CCA tumors. Blocking IL-6 trans-signaling led to a decrease in the number and size of cHCC-CCA tumors, indicating their dependence on this pathway. Furthermore, the administration of a senolytic agent inhibited IL-6 and the development of cHCC-CCA tumors. CONCLUSION: Our results demonstrate that cHCC-CCA, but not HCC tumors, originate from HPCs, and that IL-6, which derives in part from cells in senescence, plays an important role in this process via IL-6 trans-signaling. These findings could be applied to develop new therapeutic approaches for cHCC-CCA tumors. LAY SUMMARY: Combined hepatocellular carcinoma-cholangiocarcinoma is the third most prevalent type of primary liver cancer (i.e. a cancer that originates in the liver). Herein, we show that this type of cancer originates in stem cells in the liver and that it depends on inflammatory signaling. Specifically, we identify a cytokine called IL-6 that appears to be important in the development of these tumors. Our results could be used for the development of novel treatments for these aggressive tumors.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Stem Cells , Signal Transduction , Carcinogenesis , RNA , Bile Ducts, Intrahepatic , Forkhead Transcription Factors
18.
Gastroenterology ; 161(6): 1940-1952, 2021 12.
Article in English | MEDLINE | ID: mdl-34529988

ABSTRACT

BACKGROUND & AIMS: Significant progress has been made since the first report of inflammatory bowel disease (IBD) in 1859, after decades of research that have contributed to the understanding of the genetic and environmental factors involved in IBD pathogenesis. Today, a range of treatments is available for directed therapy, mostly targeting the overactive immune response. However, the mechanisms by which the immune system contributes to disease pathogenesis and progression are not fully understood. One challenge hindering IBD research is the heterogeneous nature of the disease and the lack of understanding of how immune cells interact with one another in the gut mucosa. Introduction of a technology that enables expansive characterization of the inflammatory environment of human IBD tissues may address this gap in knowledge. METHODS: We used the imaging mass cytometry platform to perform highly multiplex image analysis of IBD and healthy deidentified intestine sections (6 Crohn's disease compared to 6 control ileum; 6 ulcerative colitis compared to 6 control colon). The acquired images were graded for inflammation severity by analysis of adjacent H&E tissue sections. We assigned more than 300,000 cells to unique cell types and performed analyses of tissue integrity, epithelial activity, and immune cell composition. RESULTS: The intestinal epithelia of patients with IBD exhibited increased proliferation rates and expression of HLA-DR compared to control tissues, and both features were positively correlated with the severity of inflammation. The neighborhood analysis determined enrichment of regulatory T cell interactions with CD68+ macrophages, CD4+ T cells, and plasma cells in both forms of IBD, whereas activated lysozyme C+ macrophages were preferred regulatory T cell neighbors in Crohn's disease but not ulcerative colitis. CONCLUSIONS: Altogether, our study shows the power of imaging mass cytometry and its ability to both quantify immune cell types and characterize their spatial interactions within the inflammatory environment by a single analysis platform.


Subject(s)
Cellular Microenvironment , Colitis, Ulcerative/pathology , Colon/pathology , Crohn Disease/pathology , Epithelial Cells/pathology , Intestinal Mucosa/pathology , Microscopy, Confocal , Adolescent , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Biomarkers/metabolism , CD8-Positive T-Lymphocytes , Case-Control Studies , Cell Communication , Cell Proliferation , Child , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colon/immunology , Colon/metabolism , Crohn Disease/immunology , Crohn Disease/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , HLA-DR Antigens/metabolism , Humans , Image Processing, Computer-Assisted , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Muramidase/metabolism , Proteome , Proteomics , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology
19.
Development ; 146(14)2019 07 16.
Article in English | MEDLINE | ID: mdl-31311805

ABSTRACT

Since the first description of 'interstitial cells of Cajal' in the mammalian gut in 1911, scientists have found structurally similar cells, now termed telocytes, in numerous tissues throughout the body. These cells have recently sparked renewed interest, facilitated through the development of a molecular handle to genetically manipulate their function in tissue homeostasis and disease. In this Primer, we discuss the discovery of telocytes, their physical properties, distribution and function, focusing on recent developments in the functional analysis of Foxl1-positive telocytes in the intestinal stem cell niche, and, finally, the current challenges of studying telocytes as a distinct cell type.


Subject(s)
Telocytes/physiology , Animals , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Homeostasis/physiology , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestines/cytology , Organ Specificity , Stem Cell Niche/physiology , Telocytes/cytology
20.
Genes Dev ; 28(8): 829-34, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24736842

ABSTRACT

The homeodomain transcription factor HHEX (hematopoietically expressed homeobox) has been repeatedly linked to type 2 diabetes mellitus (T2DM) using genome-wide association studies. We report here that within the adult endocrine pancreas, Hhex is selectively expressed in the somatostatin-secreting δ cell. Using two mouse models with Hhex deficiency in the endocrine pancreas, we show that Hhex is required for δ-cell differentiation. Decreased somatostatin levels in Hhex-deficient islets cause disrupted paracrine inhibition of insulin release from ß cells. These findings identify Hhex as the first transcriptional regulator specifically required for islet δ cells and suggest compromised paracrine control as a contributor to T2DM.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Homeodomain Proteins/metabolism , Somatostatin-Secreting Cells/cytology , Somatostatin-Secreting Cells/metabolism , Transcription Factors/metabolism , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Cells, Cultured , Gene Expression Regulation , Homeodomain Proteins/genetics , Mice , Paracrine Communication/physiology , Transcription Factors/deficiency , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL