Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Publication year range
1.
Clin Genet ; 105(2): 190-195, 2024 02.
Article in English | MEDLINE | ID: mdl-37821225

ABSTRACT

Congenital alveolar dysplasia (CAD) belongs to rare lethal lung developmental disorders (LLDDs) in neonates, manifesting with acute respiratory failure and pulmonary arterial hypertension refractory to treatment. The majority of CAD cases have been associated with copy-number variant (CNV) deletions at 17q23.1q23.2 or 5p12. Most CNV deletions at 17q23.1q23.2 were recurrent and encompassed two closely located genes, TBX4 and TBX2. In a few CAD cases, intragenic frameshifting deletions or single-nucleotide variants (SNVs) involved TBX4 but not TBX2. Here, we describe a male neonate who died at 27 days of life from acute respiratory failure caused by lung growth arrest along the spectrum of CAD confirmed by histopathological assessment. Trio-based genome sequencing revealed in the proband a novel non-recurrent ~1.07 Mb heterozygous CNV deletion at 17q23.2, encompassing TBX4 that arose de novo on the paternal chromosome. This is the first report of a larger-sized CNV deletion in a CAD patient involving TBX4 and leaving TBX2 intact. Our results, together with previous reports, indicate that perturbations of TBX4, rather than TBX2, cause severe lung phenotypes in humans.


Subject(s)
Respiratory Distress Syndrome, Newborn , Respiratory Insufficiency , Humans , Infant, Newborn , Male , Familial Primary Pulmonary Hypertension , Lung , Phenotype , T-Box Domain Proteins/genetics
2.
Am J Respir Crit Care Med ; 207(7): 855-864, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36367783

ABSTRACT

Over the past decade, recognition of the profound impact of the TBX4 (T-box 4) gene, which encodes a member of the evolutionarily conserved family of T-box-containing transcription factors, on respiratory diseases has emerged. The developmental importance of TBX4 is emphasized by the association of TBX4 variants with congenital disorders involving respiratory and skeletal structures; however, the exact role of TBX4 in human development remains incompletely understood. Here, we discuss the developmental, tissue-specific, and pathological TBX4 functions identified through human and animal studies and review the published TBX4 variants resulting in variable disease phenotypes. We also outline future research directions to fill the gaps in our understanding of TBX4 function and of how TBX4 disruption affects development.


Subject(s)
T-Box Domain Proteins , Transcription Factors , Animals , Humans , T-Box Domain Proteins/genetics , Transcription Factors/genetics , Phenotype
3.
Am J Respir Crit Care Med ; 208(6): 709-725, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37463497

ABSTRACT

Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal developmental disorder of lung morphogenesis caused by insufficiency of FOXF1 (forkhead box F1) transcription factor function. The cellular and transcriptional mechanisms by which FOXF1 deficiency disrupts human lung formation are unknown. Objectives: To identify cell types, gene networks, and cell-cell interactions underlying the pathogenesis of ACDMPV. Methods: We used single-nucleus RNA and assay for transposase-accessible chromatin sequencing, immunofluorescence confocal microscopy, and RNA in situ hybridization to identify cell types and molecular networks influenced by FOXF1 in ACDMPV lungs. Measurements and Main Results: Pathogenic single-nucleotide variants and copy-number variant deletions involving the FOXF1 gene locus in all subjects with ACDMPV (n = 6) were accompanied by marked changes in lung structure, including deficient alveolar development and a paucity of pulmonary microvasculature. Single-nucleus RNA and assay for transposase-accessible chromatin sequencing identified alterations in cell number and gene expression in endothelial cells (ECs), pericytes, fibroblasts, and epithelial cells in ACDMPV lungs. Distinct cell-autonomous roles for FOXF1 in capillary ECs and pericytes were identified. Pathogenic variants involving the FOXF1 gene locus disrupt gene expression in EC progenitors, inhibiting the differentiation or survival of capillary 2 ECs and cell-cell interactions necessary for both pulmonary vasculogenesis and alveolar type 1 cell differentiation. Loss of the pulmonary microvasculature was associated with increased VEGFA (vascular endothelial growth factor A) signaling and marked expansion of systemic bronchial ECs expressing COL15A1 (collagen type XV α 1 chain). Conclusions: Distinct FOXF1 gene regulatory networks were identified in subsets of pulmonary endothelial and fibroblast progenitors, providing both cellular and molecular targets for the development of therapies for ACDMPV and other diffuse lung diseases of infancy.


Subject(s)
Persistent Fetal Circulation Syndrome , Infant, Newborn , Humans , Persistent Fetal Circulation Syndrome/genetics , Persistent Fetal Circulation Syndrome/pathology , Gene Regulatory Networks/genetics , Vascular Endothelial Growth Factor A/genetics , Endothelial Cells/pathology , Multiomics , Lung/pathology , RNA , Forkhead Transcription Factors/genetics
4.
Pediatr Dev Pathol ; : 10935266231213464, 2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38044468

ABSTRACT

Acinar dysplasia (AcDys) of the lung is a rare lethal developmental disorder in neonates characterized by severe respiratory failure and pulmonary arterial hypertension refractory to treatment. Recently, abnormalities of TBX4-FGF10-FGFR2-TMEM100 signaling regulating lung development have been reported in patients with AcDys due to heterozygous single-nucleotide variants or copy-number variant deletions involving TBX4, FGF10, or FGFR2. Here, we describe a female neonate who died at 4 hours of life due to severe respiratory distress related to AcDys diagnosed by postmortem histopathologic evaluation. Genomic analyses revealed a novel deleterious heterozygous missense variant c.728A>C (p.Asn243Thr) in TBX4 that arose de novo on paternal chromosome 17. We also identified 6 candidate hypomorphic rare variants in the TBX4 enhancer in trans to TBX4 coding variant. Gene expression analyses of proband's lung tissue showed a significant reduction of TMEM100 expression with near absence of TMEM100 within the endothelium of arteries and capillaries by immunohistochemistry. These results support the pathogenicity of the detected TBX4 variant and provide further evidence that disrupted signaling between TBX4 and TMEM100 may contribute to severe lung phenotypes in humans, including AcDys.

5.
Am J Hum Genet ; 104(2): 213-228, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30639323

ABSTRACT

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.


Subject(s)
Fibroblast Growth Factor 10/genetics , Infant, Newborn, Diseases/genetics , Infant, Newborn, Diseases/mortality , Lung Diseases/genetics , Lung Diseases/mortality , Signal Transduction/genetics , T-Box Domain Proteins/genetics , DNA Copy Number Variations/genetics , Female , Fibroblast Growth Factor 10/metabolism , Gene Expression Regulation , Gestational Age , Humans , Infant, Newborn , Infant, Newborn, Diseases/metabolism , Infant, Newborn, Diseases/pathology , Lung/embryology , Lung/growth & development , Lung Diseases/metabolism , Lung Diseases/pathology , Male , Maternal Inheritance , Organogenesis , Paternal Inheritance , Pedigree , Polymorphism, Single Nucleotide/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , T-Box Domain Proteins/metabolism
6.
Am J Med Genet A ; 188(5): 1420-1425, 2022 05.
Article in English | MEDLINE | ID: mdl-35075769

ABSTRACT

Variants involving TBX4 are associated with a wide variety of disorders, including pulmonary arterial hypertension, ischiocoxopodopatellar syndrome (ICPPS)/small patella syndrome (SPS), lethal lung developmental disorders (LLDDs) in neonates, heart defects, and prenatally lethal posterior amelia with pelvic and pulmonary hypoplasia syndrome. The objective of our study was to elucidate the wide variable phenotypic expressivity and incomplete penetrance in a three-generation family with a truncating variant in TBX4. In addition to exome and genome sequencing analyses, a candidate noncoding regulatory single nucleotide variant (SNV) within the lung-specific TBX4 enhancer was functionally tested using an in vitro luciferase reporter assay. A heterozygous frameshift variant c.1112dup (p.Pro372Serfs*14) in TBX4 was identified in patients with mild interstitial lung disease (1), bronchiolitis obliterans (1), recurrent pneumothorax (1), ICPPS/SPS (1), LLDD (2), and in unaffected individuals (4). In two deceased neonates with LLDD, we identified a noncoding SNV rs62069651-C located in trans to the mutated TBX4 allele that reduced the TBX4 promoter activity by 63% in the reporter assay. Our findings provide a functional evidence for the recently reported model of complex compound inheritance in which both TBX4 coding and in trans noncoding hypomorphic variants in the lung-specific enhancer of TBX4 contribute to LLDD.


Subject(s)
Lung Diseases , Respiratory System Abnormalities , Bone Diseases, Developmental , Hip/abnormalities , Humans , Infant, Newborn , Ischium/abnormalities , Lung/abnormalities , Lung Diseases/genetics , Patella/abnormalities , T-Box Domain Proteins/genetics
7.
Hum Mutat ; 42(6): 694-698, 2021 06.
Article in English | MEDLINE | ID: mdl-33739555

ABSTRACT

The FOXF1 gene, causative for a neonatal lethal lung developmental disorder alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), maps 1.7 kb away from the long noncoding RNA gene FENDRR on the opposite strand, suggesting they may be coregulated. Using RNA sequencing in lung tissue from ACDMPV patients with heterozygous deletions of the FOXF1 distant enhancer located 286 kb upstream, leaving FOXF1 and FENDRR intact, we have found that the FENDRR and FOXF1 expressions were reduced by approximately 75% and 50%, respectively, and were monoallelic from the intact chromosome 16q24.1. In contrast, ACDMPV patients with FOXF1 SNVs had biallelic FENDRR expression reduced by 66%-82%. Corroboratively, depletion of FOXF1 by small interfering RNA in lung fibroblasts resulted in a 50% decrease of FENDRR expression. These data indicate that FENDRR expression in the lungs is regulated both in cis by the FOXF1 distant enhancer and in trans by FOXF1. Our findings are compatible with the involvement of FENDRR in FOXF1-related disorders, including ACDMPV.


Subject(s)
Enhancer Elements, Genetic/genetics , Forkhead Transcription Factors/genetics , Lung/metabolism , Persistent Fetal Circulation Syndrome/genetics , RNA, Long Noncoding/genetics , Case-Control Studies , Female , Forkhead Transcription Factors/metabolism , Frameshift Mutation , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Infant, Newborn , Male , Mutation, Missense , Organ Specificity/genetics , Persistent Fetal Circulation Syndrome/metabolism , Persistent Fetal Circulation Syndrome/pathology , Polymorphism, Single Nucleotide , Pregnancy , RNA, Long Noncoding/metabolism
8.
Curr Issues Mol Biol ; 43(1): 276-285, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34204856

ABSTRACT

Dermal fibroblasts are responsible for the production of the extracellular matrix that undergoes significant changes during the skin aging process. These changes are partially controlled by the TGF-ß signaling, which regulates tissue homeostasis dependently on several genes, including CTGF and DNA methyltransferases. To investigate the potential differences in the regulation of the TGF-ß signaling and related molecular pathways at distinct developmental stages, we silenced the expression of TGFB1, TGFB3, TGFBR2, CTGF, DNMT1, and DNMT3A in the neonatal (HDF-N) and adult (HDF-A) human dermal fibroblasts using the RNAi method. Through Western blot, we analyzed the effects of the knockdowns of these genes on the level of the CTGF, TGFBR2, and DNMT3A proteins in both cell lines. In the in vitro assays, we observed that CTGF level was decreased after knockdown of DNMT1 in HDF-N but not in HDF-A. Similarly, the level of DNMT3A was decreased only in HDF-N after silencing of TGFBR2, TGFB3, or DNMT1. TGFBR2 level was lower in HDF-N after knockdown of TGFB3, DNMT1, or DNMT3A, but it was higher in HDF-A after TGFB1 silencing. The reduction of TGFBR2 after silencing of DNMT3A and vice versa in neonatal cells only suggests the developmental stage-specific interactions between these two genes. However, additional studies are needed to explain the dependencies between analyzed proteins.


Subject(s)
Connective Tissue Growth Factor/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methyltransferase 3A/metabolism , Fibroblasts/metabolism , Receptor, Transforming Growth Factor-beta Type II/metabolism , Transforming Growth Factor beta3/metabolism , Adult , Age Factors , Blotting, Western , Cell Line , Connective Tissue Growth Factor/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methyltransferase 3A/genetics , Fibroblasts/cytology , Humans , Infant, Newborn , RNA Interference , Receptor, Transforming Growth Factor-beta Type II/genetics , Skin/cytology , Transforming Growth Factor beta3/genetics
9.
Respir Res ; 22(1): 26, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33478486

ABSTRACT

BACKGROUND: The epithelial-mesenchymal signaling involving SHH-FOXF1, TBX4-FGF10, and TBX2 pathways is an essential transcriptional network operating during early lung organogenesis. However, precise regulatory interactions between different genes and proteins in this pathway are incompletely understood. METHODS: To identify TBX2 and TBX4 genome-wide binding sites, we performed chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) in human fetal lung fibroblasts IMR-90. RESULTS: We identified 14,322 and 1,862 sites strongly-enriched for binding of TBX2 and TBX4, respectively, 43.95% and 18.79% of which are located in the gene promoter regions. Gene Ontology, pathway enrichment, and DNA binding motif analyses revealed a number of overrepresented cues and transcription factor binding motifs relevant for lung branching that can be transcriptionally regulated by TBX2 and/or TBX4. In addition, TBX2 and TBX4 binding sites were found enriched around and within FOXF1 and its antisense long noncoding RNA FENDRR, indicating that the TBX4-FGF10 cascade may directly interact with the SHH-FOXF1 signaling. CONCLUSIONS: We highlight the complexity of transcriptional network driven by TBX2 and TBX4 and show that disruption of this crosstalk during morphogenesis can play a substantial role in etiology of lung developmental disorders.


Subject(s)
Chromatin Immunoprecipitation Sequencing/methods , Fibroblast Growth Factor 10/metabolism , Forkhead Transcription Factors/metabolism , Hedgehog Proteins/metabolism , Lung/metabolism , T-Box Domain Proteins/metabolism , Fetal Development/physiology , Fibroblast Growth Factor 10/genetics , Forkhead Transcription Factors/genetics , Hedgehog Proteins/genetics , Humans , Lung/blood supply , Lung/embryology , Protein Binding/immunology , T-Box Domain Proteins/genetics
10.
Respir Res ; 22(1): 212, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34315444

ABSTRACT

BACKGROUND: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal congenital lung disorder in neonates characterized by severe progressive respiratory failure and refractory pulmonary hypertension, resulting from underdevelopment of the peripheral pulmonary tree. Causative heterozygous single nucleotide variants (SNVs) or copy-number variant (CNV) deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of ACDMPV patients. FOXF1 maps closely to and regulates the oppositely oriented FENDRR, with which it also shares regulatory elements. METHODS: To better understand the transcriptional networks downstream of FOXF1 that are relevant for lung organogenesis, using RNA-seq, we have examined lung transcriptomes in 12 histopathologically verified ACDMPV patients with or without pathogenic variants in the FOXF1 locus and analyzed gene expression profile in FENDRR-depleted fetal lung fibroblasts, IMR-90. RESULTS: RNA-seq analyses in ACDMPV neonates revealed changes in the expression of several genes, including semaphorins (SEMAs), neuropilin 1 (NRP1), and plexins (PLXNs), essential for both epithelial branching and vascular patterning. In addition, we have found deregulation of the vascular endothelial growth factor (VEGF) signaling that also controls pulmonary vasculogenesis and a lung-specific endothelial gene TMEM100 known to be essential in vascular morphogenesis. Interestingly, we have observed a substantial difference in gene expression profiles between the ACDMPV samples with different types of FOXF1 defect. Moreover, partial overlap between transcriptome profiles of ACDMPV lungs with FOXF1 SNVs and FENDRR-depleted IMR-90 cells suggests contribution of FENDRR to ACDMPV etiology. CONCLUSIONS: Our transcriptomic data imply potential crosstalk between several lung developmental pathways, including interactions between FOXF1-SHH and SEMA-NRP or VEGF/VEGFR2 signaling, and provide further insight into complexity of lung organogenesis in humans.


Subject(s)
Forkhead Transcription Factors/metabolism , Lung/metabolism , Persistent Fetal Circulation Syndrome/metabolism , Semaphorins/metabolism , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism , Cells, Cultured , Female , Forkhead Transcription Factors/genetics , Gene Expression Profiling/methods , Gene Knockdown Techniques/methods , Humans , Infant, Newborn , Lung/pathology , Male , Persistent Fetal Circulation Syndrome/genetics , Persistent Fetal Circulation Syndrome/pathology , Semaphorins/genetics , Vascular Endothelial Growth Factor A/genetics
11.
Genomics ; 112(5): 2937-2941, 2020 09.
Article in English | MEDLINE | ID: mdl-32387503

ABSTRACT

To further assess the scale and level of parental somatic mosaicism, we queried the CMA database at Baylor Genetics. We selected 50 unrelated families where clinically relevant apparent de novo CNV-deletions were found in the affected probands. Parental blood samples screening using deletion junction-specific PCR revealed four parents with somatic mosaicism. Droplet digital PCR (ddPCR), qPCR, and amplicon-based next-generation sequencing (NGS) were applied to validate these findings. Using ddPCR levels of mosaicism ranged from undetectable to 18.5%. Amplicon-based NGS and qPCR for the father with undetectable mosaicism was able to detect mosaicism at 0.39%. In one mother, ddPCR analysis revealed 15.6%, 10.6%, 8.2%, and undetectable levels of mosaicism in her blood, buccal cells, saliva, and urine samples, respectively. Our data suggest that more sensitive and precise methods, e.g. CNV junction-specific LR-PCR, ddPCR, or qPCR may allow for a more refined assessment of the potential disease recurrence risk for an identified variant.


Subject(s)
DNA Copy Number Variations , Mosaicism , Polymerase Chain Reaction , Clinical Laboratory Techniques , Female , High-Throughput Nucleotide Sequencing , Humans , Inheritance Patterns , Male , Sequence Analysis, DNA
12.
Genet Med ; 22(11): 1768-1776, 2020 11.
Article in English | MEDLINE | ID: mdl-32655138

ABSTRACT

PURPOSE: The goal of this study was to assess the scale of low-level parental mosaicism in exome sequencing (ES) databases. METHODS: We analyzed approximately 2000 family trio ES data sets from the Baylor-Hopkins Center for Mendelian Genomics (BHCMG) and Baylor Genetics (BG). Among apparent de novo single-nucleotide variants identified in the affected probands, we selected rare unique variants with variant allele fraction (VAF) between 30% and 70% in the probands and lower than 10% in one of the parents. RESULTS: Of 102 candidate mosaic variants validated using amplicon-based next-generation sequencing, droplet digital polymerase chain reaction, or blocker displacement amplification, 27 (26.4%) were confirmed to be low- (VAF between 1% and 10%) or very low (VAF <1%) level mosaic. Detection precision in parental samples with two or more alternate reads was 63.6% (BHCMG) and 43.6% (BG). In nine investigated individuals, we observed variability of mosaic ratios among blood, saliva, fibroblast, buccal, hair, and urine samples. CONCLUSION: Our computational pipeline enables robust discrimination between true and false positive candidate mosaic variants and efficient detection of low-level mosaicism in ES samples. We confirm that the presence of two or more alternate reads in the parental sample is a reliable predictor of low-level parental somatic mosaicism.


Subject(s)
Exome , Mosaicism , Exome/genetics , High-Throughput Nucleotide Sequencing , Humans , Parents , Exome Sequencing
13.
Am J Respir Crit Care Med ; 200(9): 1093-1101, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31189067

ABSTRACT

Lethal lung developmental disorders are a rare but important group of pediatric diffuse lung diseases presenting with neonatal respiratory failure. On the basis of histopathological appearance at lung biopsy or autopsy, they have been termed: alveolar capillary dysplasia with misalignment of the pulmonary veins, acinar dysplasia, congenital alveolar dysplasia, and other unspecified primary pulmonary hypoplasias. However, the histopathological continuum in these lethal developmental disorders has made accurate diagnosis challenging, which has implications for recurrence risk. Over the past decade, genetic studies in infants with alveolar capillary dysplasia with misalignment of the pulmonary veins have revealed the causative role of the dosage-sensitive FOXF1 gene and its noncoding regulatory variants in the distant lung-specific enhancer at chromosome 16q24.1. In contrast, the molecular bases of acinar dysplasia and congenital alveolar dysplasia have remained poorly understood. Most recently, disruption of the TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling pathway has been reported in patients with these lethal pulmonary dysplasias. Application of next-generation sequencing techniques, including exome sequencing and whole-genome sequencing, has demonstrated their complex compound inheritance. These data indicate that noncoding regulatory elements play a critical role in lung development in humans. We propose that for more precise lethal lung developmental disorder diagnosis, a diagnostic pathway including whole-genome sequencing should be implemented.


Subject(s)
Lung Diseases/etiology , Lung Diseases/pathology , Lung/abnormalities , Humans
14.
BMC Pediatr ; 20(1): 320, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32600276

ABSTRACT

BACKGROUND: Alveolar capillary dysplasia (ACD) is a rare cause of severe pulmonary hypertension and respiratory failure in neonates. The onset of ACD is usually preceded by a short asymptomatic period. The condition is refractory to all available therapies as it irreversibly affects development of the capillary bed in the lungs. The diagnosis of ACD is based on histopathological evaluation of lung biopsy or autopsy tissue or genetic testing of FOXF1 on chromosome 16q24.1. Here, we describe the first two Polish patients with ACD confirmed by histopathological and genetic examination. CASE PRESENTATION: The patients were term neonates with high Apgar scores in the first minutes of life. They both were diagnosed prenatally with heart defects. Additionally, the first patient presented with omphalocele. The neonate slightly deteriorated around 12th hour of life, but underwent surgical repair of omphalocele followed by mechanical ventilation. Due to further deterioration, therapy included inhaled nitric oxide (iNO), inotropes and surfactant administration. The second patient was treated with prostaglandin E1 since birth due to suspicion of aortic coarctation (CoA). After ruling out CoA in the 3rd day of life, infusion of prostaglandin E1 was discountinued and immediately patient's condition worsened. Subsequent treatment included re-administration of prostaglandin E1, iNO and mechanical ventilation. Both patients presented with transient improvement after application of iNO, but died despite maximized therapy. They were histopathologically diagnosed post-mortem with ACD. Array comparative genomic hybridization in patient one and patient two revealed copy-number variant (CNV) deletions, respectively, ~ 1.45 Mb in size involving FOXF1 and an ~ 0.7 Mb in size involving FOXF1 enhancer and leaving FOXF1 intact. CONCLUSIONS: Both patients presented with a distinct course of ACD, extra-pulmonary manifestations and response to medications. Surgery and ceasing of prostaglandin E1 infusion should be considered as potential causes of this variability. We further highlight the necessity of thorough genetic testing and histopathological examination and propose immunostaining for CD31 and CD34 to facilitate the diagnostic process for better management of infants with ACD.


Subject(s)
Forkhead Transcription Factors , Comparative Genomic Hybridization , Forkhead Transcription Factors/genetics , Genetic Association Studies , Humans , Infant , Infant, Newborn , Persistent Fetal Circulation Syndrome , Poland , Pulmonary Alveoli/abnormalities
15.
Hum Genet ; 138(11-12): 1301-1311, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31686214

ABSTRACT

Haploinsufficiency of FOXF1 causes alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a lethal neonatal lung developmental disorder. We describe two similar heterozygous CNV deletions involving the FOXF1 enhancer and re-analyze FOXF1 missense mutation, all associated with an unexpectedly mitigated disease phenotype. In one case, the deletion of the maternal allele of the FOXF1 enhancer caused pulmonary hypertension and histopathologically diagnosed MPV without the typical ACD features. In the second case, the deletion of the paternal enhancer resulted in ACDMPV rather than the expected neonatal lethality. In both cases, FOXF1 expression in lung tissue was higher than usually seen or expected in patients with similar deletions, suggesting an increased activity of the remaining allele of the enhancer. Sequencing of these alleles revealed two rare SNVs, rs150502618-A and rs79301423-T, mapping to the partially overlapping binding sites for TFAP2s and CTCF in the core region of the enhancer. Moreover, in a family with three histopathologically-diagnosed ACDMPV siblings whose missense FOXF1 mutation was inherited from the healthy non-mosaic carrier mother, we have identified a rare SNV rs28571077-A within 2-kb of the above-mentioned non-coding SNVs in the FOXF1 enhancer in the mother, that was absent in the affected newborns and 13 unrelated ACDMPV patients with CNV deletions of this genomic region. Based on the low population frequencies of these three variants, their absence in ACDMPV patients, the results of reporter assay, RNAi and EMSA experiments, and in silico predictions, we propose that the described SNVs might have acted on FOXF1 enhancer as hypermorphs.


Subject(s)
Enhancer Elements, Genetic , Forkhead Transcription Factors/genetics , Mutation, Missense , Persistent Fetal Circulation Syndrome/prevention & control , Polymorphism, Single Nucleotide , Sequence Deletion , Adult , Child , Female , Genomic Imprinting , Humans , Infant, Newborn , Persistent Fetal Circulation Syndrome/genetics , Persistent Fetal Circulation Syndrome/pathology , Phenotype , Prognosis
16.
Clin Genet ; 96(4): 366-370, 2019 10.
Article in English | MEDLINE | ID: mdl-31309540

ABSTRACT

The canonical wingless (Wnt) and fibroblast growth factor (FGF) signaling pathways involving CTNNB1 and TBX4, respectively, are crucial for the regulation of human development. Perturbations of these pathways and disruptions from biological homeostasis have been associated with abnormal morphogenesis of multiple organs, including the lung. The aim of this study was to identify the underlying genetic cause of abnormal lung growth, pulmonary hypertension (PAH), severe microcephaly, and muscle spasticity in a full-term newborn, who died at 4 months of age due to progressively worsening PAH and respiratory failure. Family trio exome sequencing showed a de novo heterozygous nonsense c.1603C>T (p.Arg535*) variant in CTNNB1 and a paternally inherited heterozygous missense c.1198G>A (p.Glu400Lys) variant in TBX4, both predicted to be likely deleterious. We expand the phenotypic spectrum associated with CTNNB1 and TBX4 variants and indicate that they could act synergistically to produce a distinct more severe phenotype. Our findings further support a recently proposed complex compound inheritance model in lethal lung developmental diseases and the contention that dual molecular diagnoses can parsimoniously explain blended phenotypes.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Heterozygote , Phenotype , T-Box Domain Proteins/genetics , beta Catenin/genetics , Alleles , DNA Mutational Analysis , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/genetics , Immunohistochemistry , Microcephaly/diagnosis , Microcephaly/genetics , Muscle Spasticity/diagnosis , Muscle Spasticity/genetics , Mutation , Exome Sequencing
17.
Am J Med Genet A ; 179(11): 2272-2276, 2019 11.
Article in English | MEDLINE | ID: mdl-31436901

ABSTRACT

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal lung developmental disease. Affected infants manifest with severe respiratory distress and refractory pulmonary hypertension and uniformly die in the first month of life. Heterozygous point mutations or copy-number variant deletions involving FOXF1 and/or its upstream lung-specific enhancer on 16q24.1 have been identified in the vast majority of ACDMPV patients. We have previously described two unrelated families with a de novo pathogenic frameshift variant c.691_698del (p.Ala231Argfs*61) in the exon 1 of FOXF1. Here, we present a third unrelated ACDMPV family with the same de novo variant and propose that a direct tandem repeat of eight consecutive nucleotides GCGGCGGC within the ~4 kb CpG island in FOXF1 exon 1 is a novel mutation hotspot causative for ACDMPV.


Subject(s)
Forkhead Transcription Factors/genetics , Persistent Fetal Circulation Syndrome/genetics , Pulmonary Alveoli/abnormalities , Pulmonary Veins/pathology , Comparative Genomic Hybridization , CpG Islands/genetics , Enhancer Elements, Genetic , Female , Frameshift Mutation/genetics , Haploinsufficiency/genetics , Heterozygote , Humans , INDEL Mutation/genetics , Infant , Infant, Newborn , Male , Persistent Fetal Circulation Syndrome/diagnostic imaging , Persistent Fetal Circulation Syndrome/pathology , Pulmonary Alveoli/diagnostic imaging , Pulmonary Alveoli/pathology , Pulmonary Veins/diagnostic imaging , Sequence Deletion , Tandem Repeat Sequences/genetics
18.
Hum Mutat ; 39(12): 1916-1925, 2018 12.
Article in English | MEDLINE | ID: mdl-30084155

ABSTRACT

Transposable elements modify human genome by inserting into new loci or by mediating homology-, microhomology-, or homeology-driven DNA recombination or repair, resulting in genomic structural variation. Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal neonatal developmental lung disorder caused by point mutations or copy-number variant (CNV) deletions of FOXF1 or its distant tissue-specific enhancer. Eighty-five percent of 45 ACDMPV-causative CNV deletions, of which junctions have been sequenced, had at least one of their two breakpoints located in a retrotransposon, with more than half of them being Alu elements. We describe a novel ∼35 kb-large genomic instability hotspot at 16q24.1, involving two evolutionarily young LINE-1 (L1) elements, L1PA2 and L1PA3, flanking AluY, two AluSx, AluSx1, and AluJr elements. The occurrence of L1s at this location coincided with the branching out of the Homo-Pan-Gorilla clade, and was preceded by the insertion of AluSx, AluSx1, and AluJr. Our data show that, in addition to mediating recurrent CNVs, L1 and Alu retrotransposons can predispose the human genome to formation of variably sized CNVs, both of clinical and evolutionary relevance. Nonetheless, epigenetic or other genomic features of this locus might also contribute to its increased instability.


Subject(s)
Chromosomes, Human, Pair 16/genetics , DNA Copy Number Variations , Genomic Instability , Persistent Fetal Circulation Syndrome/genetics , Alu Elements , Evolution, Molecular , Forkhead Transcription Factors/genetics , Genetic Predisposition to Disease , Humans , Long Interspersed Nucleotide Elements , Pedigree , Point Mutation
20.
Mol Genet Genomics ; 292(2): 251-269, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28032277

ABSTRACT

Keratoconus (KTCN) is a degenerative disorder of the eye characterized by the conical shape and thinning of the cornea. The abnormal structure of KTCN-affected cornea results in loss of visual acuity. While many studies examine how environmental factors influence disease development, finding the genetic triggers has been a major emphasis of KTCN research. This paper focuses on genomic strategies that were implemented for finding candidate genes, including linkage and association studies, and presents different approaches of mutation screening. The advantages and limitations of particular tools are discussed based on literature and personal experience. Since etiology underlying KTCN is complex, numerous findings indicating heterogeneity of genetic factors involved KTCN etiology are presented.


Subject(s)
Genomics , Keratoconus/diagnosis , Keratoconus/genetics , Cornea/physiopathology , DNA Mutational Analysis , Eye/physiopathology , Eye Proteins/genetics , Genetic Linkage , Genetic Predisposition to Disease , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL