Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Am J Med Genet A ; 188(6): 1667-1675, 2022 06.
Article in English | MEDLINE | ID: mdl-35146895

ABSTRACT

TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.(Val837Met) has been associated with syndromic intellectual disability and seizures. In this report, we present the clinical and molecular features of seven previously unreported individuals, identified by exome sequencing, with the recurrent p.(Val837Met) variant and global developmental delay. Other shared clinical features included congenital hypotonia, dysmorphic facial features (broad forehead, deep-set eyes, and down turned mouth), exotropia, and musculoskeletal issues (hip dysplasia, hip dislocation, scoliosis). Seizures were observed in two of seven individuals (febrile seizure in one and generalized tonic-clonic seizures with atonic drops in another), and epileptiform activity was observed in an additional two individuals. This report extends the number of affected individuals to 16 who are heterozygous for the de novo recurrent substitution p.(Val837Met). In contrast with the initial report, epilepsy was not a mandatory feature observed in this series. TRPM3 pathogenic variation should be considered in individuals with global developmental delays, moderate-severe intellectual disability with, or without, childhood-onset epilepsy.


Subject(s)
Epilepsy , Infant, Newborn, Diseases , Intellectual Disability , TRPM Cation Channels , Child , Developmental Disabilities/genetics , Humans , Infant, Newborn , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Mutation, Missense , TRPM Cation Channels/genetics , Exome Sequencing
2.
Orphanet J Rare Dis ; 19(1): 213, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778413

ABSTRACT

BACKGROUND: Vascular anomalies caused by somatic (postzygotic) variants are clinically and genetically heterogeneous diseases with overlapping or distinct entities. The genetic knowledge in this field is rapidly growing, and genetic testing is now part of the diagnostic workup alongside the clinical, radiological and histopathological data. Nonetheless, access to genetic testing is still limited, and there is significant heterogeneity across the approaches used by the diagnostic laboratories, with direct consequences on test sensitivity and accuracy. The clinical utility of genetic testing is expected to increase progressively with improved theragnostics, which will be based on information about the efficacy and safety of the emerging drugs and future molecules. The aim of this study was to make recommendations for optimising and guiding the diagnostic genetic testing for somatic variants in patients with vascular malformations. RESULTS: Physicians and lab specialists from 11 multidisciplinary European centres for vascular anomalies reviewed the genes identified to date as being involved in non-hereditary vascular malformations, evaluated gene-disease associations, and made recommendations about the technical aspects for identification of low-level mosaicism and variant interpretation. A core list of 24 genes were selected based on the current practices in the participating laboratories, the ISSVA classification and the literature. In total 45 gene-phenotype associations were evaluated: 16 were considered definitive, 16 strong, 3 moderate, 7 limited and 3 with no evidence. CONCLUSIONS: This work provides a detailed evidence-based view of the gene-disease associations in the field of vascular malformations caused by somatic variants. Knowing both the gene-phenotype relationships and the strength of the associations greatly help laboratories in data interpretation and eventually in the clinical diagnosis. This study reflects the state of knowledge as of mid-2023 and will be regularly updated on the VASCERN-VASCA website (VASCERN-VASCA, https://vascern.eu/groupe/vascular-anomalies/ ).


Subject(s)
Genetic Testing , Vascular Malformations , Humans , Genetic Testing/methods , Vascular Malformations/genetics , Vascular Malformations/diagnosis , Vascular Malformations/pathology , Genetic Association Studies
3.
Eur J Med Genet ; 66(12): 104872, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37967791

ABSTRACT

Genetic conditions are often familial, but not all relatives receive counseling from the same institution. It is therefore necessary to ensure consistency in variant interpretation, counseling practices, and clinical follow up across health care providers. Furthermore, as new possibilities for gene-specific treatments emerge and whole genome sequencing becomes more widely available, efficient data handling and knowledge sharing between clinical laboratory geneticists and medical specialists in clinical genetics are increasingly important. In Denmark, these needs have been addressed through the establishment of collaborative national networks called Genetic Expert Networks or "GENets". These networks have enhanced patient and family care significantly by bringing together groups of experts in national collaborations. This promotes coordinated clinical care, the dissemination of best clinical practices, and facilitates the exchange of new knowledge.


Subject(s)
Gene Regulatory Networks , Viverridae , Humans , Animals , Health Personnel , Denmark , Genetic Counseling
4.
Front Neurol ; 13: 1066040, 2022.
Article in English | MEDLINE | ID: mdl-36578309

ABSTRACT

SLC25A46 is a mitochondrial protein involved in mitochondrial dynamics. Recently, bi-allelic variants have been identified as a pathogenic cause in a spectrum of neurological syndromes. We report a novel homozygous SLC25A46 variant in two siblings, originating from Iraq. Both presented with optic atrophy and varying neurological symptoms. The neurological examination and nerve conduction studies were consistent with sensorimotor polyneuropathy, one having mild polyneuropathy and the other pronounced polyneuropathy. The cases illustrate the disease spectrum and provide substantial information to the knowledge of polyneuropathy caused by SLC25A46 variants. It further highlights the diagnostic potentials of whole exome sequencing which can improve future understanding of disease mechanisms.

5.
Eur J Med Genet ; 65(10): 104590, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35964931

ABSTRACT

Mosaic PIK3R1 variants have recently been demonstrated in patients with complex vascular malformations and overgrowth in a syndrome resembling PIK3CA-related overgrowth syndrome (PROS). The PIK3CA-inhibitor, alpelisib, seems to be a promising treatment option for PROS patients. We describe a young boy with overgrowth and a pathogenic mosaic variant in PIK3R1; c.1699A > G, p.(Lys567Glu). He was prenatally suspected of a syndrome on the presence of unusual transient fluctuating subcutaneous edemas and lymphedema of his left shoulder. The pathogenic variant, later found to be causative, was below detection threshold in whole-genome sequencing (WGS) analysis of amniotic fluid. Upon delivery a mosaic pathogenic PIK3R1 variant, was identified by whole-exome sequencing (WES) of a skin biopsy. With no proven treatment options available, and based on the theoretical disease mechanism, alpelisib therapy was initiated at nine months of age. In the first year of treatment growth normalized and the affected vascular and lymphatic tissue regressed. No side effects have been observed. This report underlines the importance of early variant detection in children suspected of having severe mosaic overgrowth, and proves that prenatal diagnosis is possible, enabling prompt treatment. Furthermore, it demonstrates the promising effects of alpelisib in this patient group.


Subject(s)
Musculoskeletal Abnormalities , Vascular Malformations , Child , Class I Phosphatidylinositol 3-Kinases/genetics , Class Ia Phosphatidylinositol 3-Kinase , Early Diagnosis , Female , Humans , Male , Mutation , Precision Medicine , Pregnancy , Syndrome , Thiazoles , Transcription Factors , Vascular Malformations/diagnosis
6.
Sci Rep ; 12(1): 14959, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056138

ABSTRACT

Mohr-Tranebjærg syndrome is an X-linked syndrome characterized by sensorineural hearing impairment in childhood, followed by progressive neurodegeneration leading to a broad phenotypic spectrum. Genetically MTS is caused by pathogenic variants in the TIMM8A gene, including gene deletions and larger contiguous gene deletions. Some of the latter involve the neighboring gene BTK, resulting in agammaglobulinemia. By next-generation mate-pair sequencing we have mapped the chromosomal deletion breakpoints of one MTS case and three XLA-MTS cases and used breakpoint-spanning PCR to fine map the breakpoints by Sanger sequencing. Two of the XLA-MTS cases presented with large deletions (63.5 and 27.2 kb), and the junctional regions were characterized by long stretches of microhomology, indicating that the events have emerged through homologous recombination. Conversely, the MTS case exhibited a small 2 bp region of microhomology, and the regions were not characterized by extensive microhomology. The third XLA-MTS case had a more complex breakpoint, including a 59 bp inverted insertion, thus at least four breakpoints were involved in this event. In conclusion, mate-pair library generation combined with next-generation sequencing is an efficient method for breakpoint identification, also in regions characterized by repetitive elements.


Subject(s)
Deaf-Blind Disorders , Dystonia , Intellectual Disability , Optic Atrophy , Deaf-Blind Disorders/genetics , Dystonia/genetics , Humans , Intellectual Disability/genetics , Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Optic Atrophy/genetics
7.
Eur J Med Genet ; 63(3): 103733, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31449985

ABSTRACT

Biallelic variants in HARS2 have been associated with Perrault syndrome, characterized by sensorineural hearing impairment and premature ovarian insufficiency. Here we report three novel families, compound heterozygous for missense variants in HARS2 identified by next-generation sequencing, namely c.172A > G (p.Lys58Glu) and c.448C > T (p.Arg150Cys) identified in two sisters aged 13 and 16 years and their older brother, c.448C > T (p.Arg150Cys) and c.980G > A (p.Arg327Gln) identified in a seven year old girl, and finally c.137T > A (p.Leu46Gln) and c.259C > T (p.Arg87Cys) identified in a 32 year old woman. Clinically, all five individuals presented with early onset, rapidly progressive hearing impairment. Whereas the oldest female fulfilled the criteria of Perrault syndrome, the three younger females, aged 7, 13 and 16, all had apparently normal ovarian function, apart from irregular menstrual periods in the oldest female at age 16. The present report expands the list of HARS2 variants and helps gain further knowledge to the phenotype.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Gonadal Dysgenesis, 46,XX/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss/genetics , Primary Ovarian Insufficiency/genetics , Adolescent , Adult , Child , Female , Gonadal Dysgenesis, 46,XX/physiopathology , Hearing Loss/physiopathology , Hearing Loss, Sensorineural/physiopathology , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation, Missense , Pedigree , Exome Sequencing
8.
Brain Imaging Behav ; 12(6): 1569-1582, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29442274

ABSTRACT

The human sense of smell is closely associated with morphological differences of the fronto-limbic system, specifically the piriform cortex and medial orbitofrontal cortex (mOFC). Still it is unclear whether cortical volume in the core olfactory areas and connected brain regions are shaped differently in individuals who suffer from lifelong olfactory deprivation relative to healthy normosmic individuals. To address this question, we examined if regional variations in gray matter volume were associated with smell ability in seventeen individuals with isolated congenital olfactory impairment (COI) matched with sixteen normosmic controls. All subjects underwent whole-brain magnetic resonance imaging, and voxel-based morphometry was used to estimate regional variations in grey matter volume. The analyses showed that relative to controls, COI subjects had significantly larger grey matter volumes in left middle frontal gyrus and right superior frontal sulcus (SFS). COI subjects with severe olfactory impairment (anosmia) had reduced grey matter volume in the left mOFC and increased volume in right piriform cortex and SFS. Within the COI group olfactory ability, measured with the "Sniffin' Sticks" test, was positively associated with larger grey matter volume in right posterior cingulate and parahippocampal cortices whereas the opposite relationship was observed in controls. Across COI subjects and controls, better olfactory detection threshold was associated with smaller volume in right piriform cortex, while olfactory identification was negatively associated with right SFS volume. Our findings suggest that lifelong olfactory deprivation trigger changes in the cortical volume of prefrontal and limbic brain regions previously linked to olfactory memory.


Subject(s)
Limbic System/diagnostic imaging , Olfaction Disorders/congenital , Olfaction Disorders/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Image Processing, Computer-Assisted , Limbic System/pathology , Magnetic Resonance Imaging , Male , Middle Aged , Olfaction Disorders/pathology , Olfactory Perception , Organ Size , Prefrontal Cortex/pathology
9.
Mol Genet Genomic Med ; 4(5): 527-539, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27957503

ABSTRACT

BACKGROUND: Usher syndrome (USH) is a genetically heterogeneous deafness-blindness syndrome, divided into three clinical subtypes: USH1, USH2 and USH3. METHODS: Mutations in 21 out of 26 investigated Danish unrelated individuals with USH were identified, using a combination of molecular diagnostic methods. RESULTS: Before Next Generation Sequencing (NGS) became available mutations in nine individuals (1 USH1, 7 USH2, 1 USH3) were identified by Sanger sequencing of USH1C,USH2A or CLRN1 or by Arrayed Primer EXtension (APEX) method. Mutations in 12 individuals (7 USH1, 5 USH2) were found by targeted NGS of ten known USH genes. Five novel pathogenic variants were identified. We combined our data with previously published, and obtained an overview of the USH mutation spectrum in Denmark, including 100 unrelated individuals; 32 with USH1, 67 with USH2, and 1 with USH3. Macular edema was observed in 44 of 117 individuals. Olfactory function was tested in 12 individuals and found to be within normal range in all. CONCLUSION: Mutations that lead to USH1 were predominantly identified in MYO7A (75%), whereas all mutations in USH2 cases were identified in USH2A. The MYO7A mutation c.93C>A, p.(Cys31*) accounted for 33% of all USH1 mutations and the USH2A c.2299delG, p.(Glu767Serfs*21) variant accounted for 45% of all USH2 mutations in the Danish cohort.

SELECTION OF CITATIONS
SEARCH DETAIL