Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Mol Biol Rep ; 49(12): 11829-11846, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36214948

ABSTRACT

BACKGROUND: Porcine circovirus 2 is globally noted swine pathogen with multiple genotypes associated with vast clinical and subclinical outcomes. This study aimed to isolate and characterize PCV2 genotypes circulating in southern states of India. METHODS AND RESULTS: A total of 434 field samples comprising of serum (n = 273), tissues (n = 109) and swabs (n = 52) collected from swine during 2019 to 2021 from southern states of India were screened for PCV2 by specific polymerase chain reaction (PCR) assay. Molecular prevalence of PCV2 in southern India was found to be 12.21% (n = 53). All the 53 PCV2 positive samples were further subjected to the PCR assay with designed primers targeting full length amplification of ORF2 gene of PCV2 for molecular characterization. Randomly 32 positive samples by full length PCV2-ORF2 gene PCR were sequenced for genotyping. Signature motif and phylogenetic analysis of 32 PCV2 sequences revealed 62.5% (n = 20) prevalence of PCV2d genotype followed by 21.8% (n = 7) of PCV2h or PCV2-IM1 and 15.6% (n = 5) of PCV2b genotypes. Twenty five PCR positive field samples were subjected for virus isolation in PK15 cells and characterized. Out of 25 samples processed 5 (20%) PCV2 isolates obtained in this study were confirmed by PCR and immune fluorescence assay. Molecular characterization of PK15 adapted five PCV2 isolates confirmed circulation of PCV2d, PCV2h and PCV2b genotypes in pigs under field conditions in southern India. CONCLUSIONS: Isolation and molecular epidemiological study of PCV2 in southern states of India evidences high circulation of PCV2d genotypes in field conditions in comparison to other genotypes.


Subject(s)
Circoviridae Infections , Circovirus , Swine Diseases , Swine , Animals , Circovirus/genetics , Circoviridae Infections/epidemiology , Circoviridae Infections/veterinary , Phylogeny , Swine Diseases/epidemiology , Genotype
2.
Article in English | MEDLINE | ID: mdl-37749431

ABSTRACT

Penaeus vannamei (whiteleg shrimp) is the most widely cultured shrimp globally. Enterocytozoon hepatopenaei (EHP), a microsporidian parasite, infects P. vannamei and causes severe growth retardation, subsequent production, and economic losses in the shrimp culture. The influence of EHP infection in the shrimp gut microbiota is poorly studied, and this would be an interesting area to investigate since the gut microbiome of shrimp influences a number of key host processes such as digestion and immunity. In this study, a metagenomic approach was followed to compare the overall species richness of the gut microbiota of EHP-infected and healthy P. vannamei. Bacterial genomic DNA from the healthy and EHP-infected gut sample were profiled for the bacterial 16S rRNA gene, targeting the V3-V4 conserved region. Operational taxonomic units (OTUs), an approximation of definitive taxonomic identity, were identified based on the sequence similarity within the sample reads and clustered together using a cut-off of 97% identity using UCLUST. The OTUs were then used for the computation of alpha diversity and beta diversity for each sample. EHP-infected gut sample showed lower bacterial abundance throughout the family, class, order, genus, and species levels when compared to healthy gut sample. This study shows that the shrimp gut microbiota is sensitive and exhibits a high level of plasticity during a microsporidian infection like EHP. Furthermore, Akkermansia muciniphila, a novel probiotic bacterium, has been reported in the shrimp gut for the first time.

3.
Virusdisease ; 33(3): 284-290, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36277416

ABSTRACT

The present study examined 434 field samples including serum (n = 273), swabs from natural orifices (n = 52) and postmortem tissue samples (n = 109) from both suspected and asymptomatic swine from Andhra Pradesh, Karnataka, Kerala, Pondicherry, Tamil Nadu, and Telangana states in southern India. All the samples were processed for molecular screening of PCV3 by specific PCR assay. Overall molecular positivity rate of PCV3 was found to be 0.7% in southern India with one sample positive from each state of Tamil Nadu, Kerala and Telangana. All the three PCR positive PCV3 samples are detected from reproductive failures and were processed and propagated in PK15 cell line for virus isolation. Out of 3 samples processed, one (INDKL9PK76) PCV3 isolate could be obtained in this study and it was confirmed by specific PCR at third and fifth passage levels. Sequencing of PCV3 positive PCR amplicon (INDKL9PK76) revealed 1004 nucleotides and BLAST analysis confirmed partial sequence of the PCV3 genome. The aligned contig sequence was submitted to GenBank under the accession number of MW627201. PCV3 sequence in this study revealed 99% homology with PCV3 isolates from Europe and China. Phylogentic analysis of the PCV3 isolate-INDKL9PK76 sequence along with established PCV3 genotypes revealed clustering within PCV3 genotypes. Characterization of PCV3 (INDKL9PK76) isolate based on deduced amino acid composition of PCV3-capsid protein revealed "A" (alanine) and "R" (arginine) at 24th and 27th residues respectively confirming the incidence of PCV3a genotype. This study evidences PCV3 associated reproductive failure in domestic pigs for the first time in southern India.

4.
Transbound Emerg Dis ; 69(4): 1804-1812, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34008351

ABSTRACT

A total of 200 samples from Porcine circovirus 2 suspected (n = 112) and healthy (n = 88) swine populations collected from different districts of Tamil Nadu, south India were used in this study. The samples comprising of serum (n = 124), swabs from natural orifices (n = 52), and postmortem tissues (n = 24). All the samples were processed and subjected to the screening and detection of the PCV2 genome by a specific PCR assay. PCV2 genomes from positive samples were further subjected to genotyping with specifically designed primers for the full-length amplification of the ORF2 gene which codes for capsid protein (Cp) and serves as an epidemiological marker. Randomly, 13 amplified ORF2 genes were sequenced and the aligned sequences were subjected to signature motif analysis and phylogeny in MEGA X. The molecular prevalence of PCV2 infection in Tamil Nadu is 10.5% (n = 21). Signature motif and phylogenetic studies of 13 samples revealed 38.5% (n = 5) presence of each PCV2b intermediate 1(IM1) and PCV2b genotypes, followed by 15.4% (n = 2) PCV2d-2 and 7.7% (n = 1) PCV2d genotypes. The PCV2b-IM1 genotype has a 99.43% sequence homology with Vietnam isolate (JX506730). PCV2b genotypes showed 99.72% sequence identity with Chinese isolate (KX068219). PCV2d-2 genotypes reported in this study have 100% sequence identity with Taiwan isolate (MF169721). PCV2d genotype showed 97.87% sequence identity with Thailand isolate (MF314293). Amino acid analysis of all the 13 full-length ORF2 gene sequences revealed specific mutations in the immune reactive domains of A, B, C, and D. Capsid protein of three PCV2b and five PCV2b IM1 isolates had extra amino acid residue lysine (K) at 234 position of ORF2 similar to PCV2d. For the first time in South India, PCV2b IM1 and PCV2d-2 genotypes are reported. This study evidences the genetic shifts of PCV2 isolates in India and it is analogous to that of global genotypic shift.


Subject(s)
Circoviridae Infections , Circovirus , Swine Diseases , Amino Acids/genetics , Animals , Capsid Proteins/genetics , Circoviridae Infections/epidemiology , Circoviridae Infections/veterinary , Genotype , India/epidemiology , Phylogeny , Swine , Swine Diseases/epidemiology
6.
Dev Comp Immunol ; 74: 167-177, 2017 09.
Article in English | MEDLINE | ID: mdl-28456536

ABSTRACT

A successful immune response against invading pathogens relies on the efficient activation of host defense mechanisms and a timely return to immune homeostasis. Despite their importance, these mechanisms remain ill-defined in most animal groups. This study focuses on the acute inflammatory response of chickens, important both as an avian model with a unique position in evolution as well as an increasingly notable target of infectious zoonotic diseases. We took advantage of an in vivo self-resolving intra-abdominal challenge model to provide an integrative view of leukocyte responses during the induction and resolution phases of acute inflammation. Our results showed rapid leukocyte infiltration into the abdominal cavity post zymosan challenge (significant increase as early as 4 h), which was dominated by heterophils. Peak leukocyte infiltration and ROS production reached maximum levels at 12 h post challenge, which was significantly earlier than comparative studies in teleost fish and mice. Both heterophils and monocyte/macrophages contributed to ROS production. Local leukocyte infiltration was preceded by an increase in peripheral leukocytes and a drop in the number of bone marrow leukocytes. The proportion of apoptotic leukocytes increased following peak of acute inflammation, rising to significant levels within the abdominal cavity by 48 h, consistent with other indicators for the resolution of inflammation. Importantly, comparison of chicken phagocytic responses with those previously shown in agnathan, teleost and murine models suggested a progressive evolutionary shift towards an increased sensitivity to pro-inflammatory pathogen-derived particles and decreased sensitivity towards homeostatic stimuli. Thus, while significant conservation can be noted across the immune systems of endotherms, this study highlights additional unique features that govern the induction and resolution of acute inflammation in the avian system, which may be relevant to disease susceptibility and performance.


Subject(s)
Bird Diseases/immunology , Chickens/immunology , Inflammation/immunology , Leukocytes/immunology , Peritoneum/physiology , Zoonoses/immunology , Acute Disease , Animals , Apoptosis , Biological Evolution , Cell Movement , Cell Proliferation , Fishes , Humans , Immunity, Innate , Mice , Phagocytosis , Physiology, Comparative , Reactive Oxygen Species/metabolism , Zymosan/immunology
SELECTION OF CITATIONS
SEARCH DETAIL