Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Proc Natl Acad Sci U S A ; 119(20): e2119107119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35544689

ABSTRACT

A molecular architecture is proposed for a representative mitotic chromosome, human chromosome 10. This architecture is built on an interphase chromosome structure based on cryo-electron microscopy (cryo-EM) cellular tomography [J. Sedat et al., Proc. Natl. Acad. Sci. U.S.A., in press], thus unifying chromosome structure throughout the complete mitotic cycle. The basic organizational principle for mitotic chromosomes is specific coiling of the 11-nm nucleosome fiber into large scale, ∼200-nm interphase structures, a Slinky [https://en.wikipedia.org/wiki/Slinky; motif cited in S. Bowerman et al., eLife 10, e65587 (2021)], then further modified with subsequent additional coiling for the final mitotic chromosome structure. The final mitotic chromosome architecture accounts for the dimensional values as well as the well-known cytological configurations. In addition, proof is experimentally provided by digital PCR technology that G1 T cell nuclei are diploid with one DNA molecule per chromosome. Many nucleosome linker DNA sequences, the promotors and enhancers, are suggestive of optimal exposure on the surfaces of the large-scale coils.


Subject(s)
Chromosomes, Human, Pair 10 , DNA Packaging , Mitosis , Nucleosomes , Cell Nucleus/genetics , Chromosomes, Human, Pair 10/chemistry , Chromosomes, Human, Pair 10/genetics , G1 Phase , Humans , Nucleosomes/chemistry , Nucleosomes/genetics , Polymerase Chain Reaction , T-Lymphocytes/cytology
2.
EMBO J ; 31(23): 4453-65, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23103766

ABSTRACT

Histone deacetylase 7 (HDAC7) is a T-cell receptor (TCR) signal-dependent regulator of differentiation that is highly expressed in CD4/CD8 double-positive (DP) thymocytes. Here, we examine the effect of blocking TCR-dependent nuclear export of HDAC7 during thymic selection, through expression of a signal-resistant mutant of HDAC7 (HDAC7-ΔP) in thymocytes. We find that HDAC7-ΔP transgenic thymocytes exhibit a profound block in negative thymic selection, but can still undergo positive selection, resulting in the escape of autoreactive T cells into the periphery. Gene expression profiling reveals a comprehensive suppression of the negative selection-associated gene expression programme in DP thymocytes, associated with a defect in the activation of MAP kinase pathways by TCR signals. The consequence of this block in vivo is a lethal autoimmune syndrome involving the exocrine pancreas and other abdominal organs. These experiments establish a novel molecular model of autoimmunity and cast new light on the relationship between thymic selection and immune self-tolerance.


Subject(s)
Active Transport, Cell Nucleus , CD4 Antigens/biosynthesis , CD8 Antigens/biosynthesis , Histone Deacetylases/metabolism , Thymocytes/cytology , Thymus Gland/immunology , Animals , Autoimmunity , Cell Proliferation , Female , Flow Cytometry/methods , Gene Expression Regulation , Immune System , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Oligonucleotide Array Sequence Analysis , Signal Transduction , Thymus Gland/metabolism
3.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854043

ABSTRACT

Background: Bone fracture is one of the most globally prevalent injuries, with an estimated 189 million bone fractures occurring annually. Delayed union or nonunion occurs in up to 15% of fractures and involves the interruption or complete failure of bone continuity following fracture. Preclinical testing is essential to support the translation of novel strategies to promote improved fracture repair treatment, but there is a paucity of small animal models that recapitulate clinical attributes associated with delayed fracture healing. This study explores whether the Zmpste24 -/- (Z24 -/- ) knockout mouse model of Hutchinson-Gilford progeria syndrome presents with delayed fracture healing. Leveraging the previously characterized Z24 -/- phenotype of genomic instability, epigenetic changes, and fragility, we hypothesize that these underlying alterations will lead to significantly delayed fracture healing relative to age-matched wild type (WT) controls. Methods: WT and Z24 -/- mice received intramedullary fixed tibia fractures at ∼12 weeks of age. Mice were sacrificed throughout the time course of repair for the collection of organs that would provide information regarding the local (fracture callus, bone marrow, inguinal lymph nodes) versus peripheral (peripheral blood, contralateral tibia, abdominal organs) tissue microenvironments. Analyses of these specimens include histomorphometry, µCT, mechanical strength testing, protein quantification, gene expression analysis, flow cytometry for cellular senescence, and immunophenotyping. Results: Z24 -/- mice demonstrated a significantly delayed rate of healing compared to WT mice with consistently smaller fracture calli containing higher proportion of cartilage and less bone after injury. Cellular senescence and pro-inflammatory cytokines were elevated in the Z24 -/- mice before and after fracture. These mice further presented with a dysregulated immune system, exhibiting generally decreased lymphopoiesis and increased myelopoiesis locally in the bone marrow, with more naïve and less memory T cell but greater myeloid activation systemically in the peripheral blood. Surprisingly, the ipsilateral lymph nodes had increased T cell activation and other pro-inflammatory NK and myeloid cells, suggesting that elevated myeloid abundance and activation contributes to an injury-specific hyperactivation of T cells. Conclusion: Taken together, these data establish the Z24 -/- progeria mouse as a model of delayed fracture healing that exhibits decreased bone in the fracture callus, with weaker overall bone quality, immune dysregulation, and increased cellular senescence. Based on this mechanism for delayed healing, we propose this Z24 -/- progeria mouse model could be useful in testing novel therapeutics that could address delayed healing. The Translational Potential of this Article: This study employs a novel animal model for delayed fracture healing that researchers can use to screen fracture healing therapeutics to address the globally prevalent issue of aberrant fracture healing.

4.
Nat Commun ; 15(1): 4795, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862487

ABSTRACT

Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.


Subject(s)
Leukocytes, Mononuclear , Single-Cell Analysis , Space Flight , Weightlessness Simulation , Animals , Female , Humans , Male , Mice , Immunity, Innate , Inflammation/immunology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Machine Learning , Mice, Inbred C57BL , Quercetin/pharmacology , Signal Transduction , T-Lymphocytes/immunology , Weightlessness
5.
J Immunol ; 186(8): 4782-93, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21398603

ABSTRACT

CD4/CD8 double-positive thymocytes express the transcriptional repressor histone deacetylase (HDAC)7, a class IIa HDAC that is exported from the cell nucleus after TCR engagement. Through signal-dependent nuclear export, class IIa HDACs such as HDAC7 mediate signal-dependent changes in gene expression that are important to developmental fate decisions in multiple tissues. We report that HDAC7 is exported from the cell nucleus during positive selection in mouse thymocytes and that it regulates genes mediating the coupling between TCR engagement and downstream events that determine cell survival. Thymocytes lacking HDAC7 are inefficiently positively selected due to a severely shortened lifespan and exhibit a truncated repertoire of TCR Jα segments. The expression of multiple important mediators and modulators of the response to TCR engagement is altered in HDAC7-deficient thymocytes, resulting in increased tonic MAPK activity that contributes to the observed loss of viability. Remarkably, the activity of protein kinase D, the kinase that mediates nuclear export of HDAC7 in response to TCR signaling, is also increased in HDAC7-deficient thymocytes, suggesting that HDAC7 nuclear export governs a self-sustaining autoexcitatory loop. These experiments add to the understanding of the life/death decision in thymic T cell development, define a novel function for class IIa HDACs, and point to a novel feed-forward mechanism whereby these molecules regulate their own state and mediate stable developmental transitions.


Subject(s)
CD4 Antigens/metabolism , CD8 Antigens/metabolism , Histone Deacetylases/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Thymus Gland/metabolism , Animals , Apoptosis , Blotting, Western , Cell Nucleus/metabolism , Cell Survival , Female , Gene Expression Profiling , Histone Deacetylases/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Oligonucleotide Array Sequence Analysis , Protein Kinase C/metabolism , Protein Transport , Receptors, Antigen, T-Cell/genetics , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/metabolism , Thymus Gland/cytology
6.
iScience ; 26(10): 107949, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37822499

ABSTRACT

Mammalian female reproductive lifespan is typically significantly shorter than life expectancy and is associated with a decrease in ovarian NAD+ levels. However, the mechanisms underlying this loss of ovarian NAD+ are unclear. Here, we show that CD38, an NAD+ consuming enzyme, is expressed in the ovarian extrafollicular space, primarily in immune cells, and its levels increase with reproductive age. Reproductively young mice lacking CD38 exhibit larger primordial follicle pools, elevated ovarian NAD+ levels, and increased fecundity relative to wild type controls. This larger ovarian reserve results from a prolonged window of follicle formation during early development. However, the beneficial effect of CD38 loss on reproductive function is not maintained at advanced age. Our results demonstrate a novel role of CD38 in regulating ovarian NAD+ metabolism and establishing the ovarian reserve, a critical process that dictates a female's reproductive lifespan.

7.
Sci Transl Med ; 14(675): eabl3651, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36516268

ABSTRACT

Genome-wide association studies identifying hundreds of susceptibility loci for autoimmune diseases indicate that genes active in immune cells predominantly mediate risk. However, identification and functional characterization of causal variants remain challenging. Here, we focused on the immunomodulatory role of a protective variant of histone deacetylase 7 (HDAC7). This variant (rs148755202, HDAC7.p.R166H) was identified in a study of low-frequency coding variation in multiple sclerosis (MS). Through transcriptomic analyses, we demonstrate that wild-type HDAC7 regulates genes essential for the function of Foxp3+ regulatory T cells (Tregs), an immunosuppressive subset of CD4 T cells that is generally dysfunctional in patients with MS. Moreover, Treg-specific conditional hemizygous deletion of HDAC7 increased the severity of experimental autoimmune encephalitis (EAE), a mouse model of neuroinflammation. In contrast, Tregs transduced with the protective HDAC7 R166H variant exhibited higher suppressive capacity in an in vitro functional assay, mirroring phenotypes previously observed in patient samples. In vivo modeling of the human HDAC7 R166H variant by generation of a knock-in mouse model bearing an orthologous R150H substitution demonstrated decreased EAE severity linked to transcriptomic alterations of brain-infiltrating Tregs, as assessed by single-cell RNA sequencing. Our data suggest that dysregulation of epigenetic modifiers, a distinct molecular class associated with disease risk, may influence disease onset. Last, our approach provides a template for the translation of genetic susceptibility loci to detailed functional characterization, using in vitro and in vivo modeling.


Subject(s)
Multiple Sclerosis , T-Lymphocytes, Regulatory , Mice , Animals , Humans , Multiple Sclerosis/genetics , Genome-Wide Association Study , CD4-Positive T-Lymphocytes , Histone Deacetylases , Disease Models, Animal
8.
Sci Rep ; 12(1): 14804, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36045139

ABSTRACT

Post-translational modifications, such as lysine acetylation, regulate the activity of diverse proteins across many cellular compartments. Protein deacetylation in mitochondria is catalyzed by the enzymatic activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3), however it remains unclear whether corresponding mitochondrial acetyltransferases exist. We used a bioinformatics approach to search for mitochondrial proteins with an acetyltransferase catalytic domain, and identified a novel splice variant of ELP3 (mt-ELP3) of the elongator complex, which localizes to the mitochondrial matrix in mammalian cells. Unexpectedly, mt-ELP3 does not mediate mitochondrial protein acetylation but instead induces a post-transcriptional modification of mitochondrial-transfer RNAs (mt-tRNAs). Overexpression of mt-ELP3 leads to the protection of mt-tRNAs against the tRNA-specific RNase angiogenin, increases mitochondrial translation, and furthermore increases expression of OXPHOS complexes. This study thus identifies mt-ELP3 as a non-canonical mt-tRNA modifying enzyme.


Subject(s)
Histone Acetyltransferases , RNA Processing, Post-Transcriptional , Animals , Histone Acetyltransferases/metabolism , Mammals/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Biosynthesis , RNA, Mitochondrial/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
9.
Mol Cell Biol ; 27(14): 5184-200, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17470548

ABSTRACT

Histone deacetylase 7 (HDAC7) is highly expressed in CD4(+)/CD8(+) thymocytes and functions as a signal-dependent repressor of gene transcription during T-cell development. In this study, we expressed HDAC7 mutant proteins in a T-cell line and use DNA microarrays to identify transcriptional targets of HDAC7 in T cells. The changes in gene expression levels were compared to differential gene expression profiles associated with positive and negative thymic selection. This analysis reveals that HDAC7 regulates an extensive set of genes that are differentially expressed during both positive and negative thymic selection. Many of these genes play important functional roles in thymic selection, primarily via modulating the coupling between antigen receptor engagement and downstream signaling events. Consistent with the model that HDAC7 may play an important role in both positive and negative thymic selection, the expression of distinct HDAC7 mutants or the abrogation of HDAC7 expression can either enhance or inhibit the signal-dependent differentiation of a CD4(+)/CD8(+) cell line.


Subject(s)
Genes, Regulator , Histone Deacetylases/metabolism , Selection, Genetic , T-Lymphocytes/cytology , Animals , Apoptosis , Cell Differentiation , DNA-Binding Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , MEF2 Transcription Factors , Mice , Mutant Proteins/metabolism , Myogenic Regulatory Factors/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1 , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Protein Binding , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/metabolism , Reproducibility of Results , T-Lymphocytes/metabolism , Transcription Factors/metabolism
10.
Cell Metab ; 32(3): 447-456.e6, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32877690

ABSTRACT

Metabolism and aging are tightly connected. Alpha-ketoglutarate is a key metabolite in the tricarboxylic acid (TCA) cycle, and its levels change upon fasting, exercise, and aging. Here, we investigate the effect of alpha-ketoglutarate (delivered in the form of a calcium salt, CaAKG) on healthspan and lifespan in C57BL/6 mice. To probe the relationship between healthspan and lifespan extension in mammals, we performed a series of longitudinal, clinically relevant measurements. We find that CaAKG promotes a longer, healthier life associated with a decrease in levels of systemic inflammatory cytokines. We propose that induction of IL-10 by dietary AKG suppresses chronic inflammation, leading to health benefits. By simultaneously reducing frailty and enhancing longevity, AKG, at least in the murine model, results in a compression of morbidity.


Subject(s)
Aging/drug effects , Ketoglutaric Acids/pharmacology , Longevity/drug effects , Aging/metabolism , Animals , Cell Line , Female , Ketoglutaric Acids/metabolism , Male , Mice , Mice, Inbred C57BL
11.
Nat Metab ; 2(11): 1265-1283, 2020 11.
Article in English | MEDLINE | ID: mdl-33199924

ABSTRACT

Declining tissue nicotinamide adenine dinucleotide (NAD) levels are linked to ageing and its associated diseases. However, the mechanism for this decline is unclear. Here, we show that pro-inflammatory M1-like macrophages, but not naive or M2 macrophages, accumulate in metabolic tissues, including visceral white adipose tissue and liver, during ageing and acute responses to inflammation. These M1-like macrophages express high levels of the NAD-consuming enzyme CD38 and have enhanced CD38-dependent NADase activity, thereby reducing tissue NAD levels. We also find that senescent cells progressively accumulate in visceral white adipose tissue and liver during ageing and that inflammatory cytokines secreted by senescent cells (the senescence-associated secretory phenotype, SASP) induce macrophages to proliferate and express CD38. These results uncover a new causal link among resident tissue macrophages, cellular senescence and tissue NAD decline during ageing and offer novel therapeutic opportunities to maintain NAD levels during ageing.


Subject(s)
ADP-ribosyl Cyclase 1/genetics , Aging/metabolism , Cellular Senescence , Macrophage Activation , Membrane Glycoproteins/genetics , NAD/metabolism , ADP-ribosyl Cyclase/metabolism , Adipose Tissue, White/metabolism , Animals , Antigens, CD/metabolism , Cytokines/metabolism , Female , GPI-Linked Proteins/metabolism , Gene Expression , Glycolysis/genetics , Humans , Liver/metabolism , Male , Metabolome , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , NAD+ Nucleosidase/metabolism
12.
Cell Rep ; 28(13): 3329-3337.e5, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31553904

ABSTRACT

Cellular senescence irreversibly arrests cell proliferation, accompanied by a multi-component senescence-associated secretory phenotype (SASP) that participates in several age-related diseases. Using stable isotope labeling with amino acids (SILACs) and cultured cells, we identify 343 SASP proteins that senescent human fibroblasts secrete at 2-fold or higher levels compared with quiescent cell counterparts. Bioinformatic analysis reveals that 44 of these proteins participate in hemostasis, a process not previously linked with cellular senescence. We validated the expression of some of these SASP factors in cultured cells and in vivo. Mice treated with the chemotherapeutic agent doxorubicin, which induces widespread cellular senescence in vivo, show increased blood clotting. Conversely, selective removal of senescent cells using transgenic p16-3MR mice showed that clearing senescent cells attenuates the increased clotting caused by doxorubicin. Our study provides an in-depth, unbiased analysis of the SASP and unveils a function for cellular senescence in hemostasis.


Subject(s)
Cellular Senescence/genetics , Hemostasis , Humans
13.
Elife ; 72018 04 17.
Article in English | MEDLINE | ID: mdl-29664401

ABSTRACT

We report that Histone Deacetylase 7 (HDAC7) controls the thymic effector programming of Natural Killer T (NKT) cells, and that interference with this function contributes to tissue-specific autoimmunity. Gain of HDAC7 function in thymocytes blocks both negative selection and NKT development, and diverts Vα14/Jα18 TCR transgenic thymocytes into a Tconv-like lineage. Conversely, HDAC7 deletion promotes thymocyte apoptosis and causes expansion of innate-effector cells. Investigating the mechanisms involved, we found that HDAC7 binds PLZF and modulates PLZF-dependent transcription. Moreover, HDAC7 and many of its transcriptional targets are human risk loci for IBD and PSC, autoimmune diseases that strikingly resemble the disease we observe in HDAC7 gain-of-function in mice. Importantly, reconstitution of iNKT cells in these mice mitigated their disease, suggesting that the combined defects in negative selection and iNKT cells due to altered HDAC7 function can cause tissue-restricted autoimmunity, a finding that may explain the association between HDAC7 and hepatobiliary autoimmunity.


Subject(s)
Autoimmunity , Histone Deacetylases/metabolism , Natural Killer T-Cells/immunology , Animals , Animals, Genetically Modified , Gene Deletion , Gene Expression , Humans , Mice , Promyelocytic Leukemia Zinc Finger Protein/metabolism
14.
Trends Genet ; 19(5): 286-93, 2003 May.
Article in English | MEDLINE | ID: mdl-12711221

ABSTRACT

Histone acetylation and deacetylation play essential roles in modifying chromatin structure and regulating gene expression in eukaryotes. Histone deacetylases (HDACs) catalyze the deacetylation of lysine residues in the histone N-terminal tails and are found in large multiprotein complexes with transcriptional co-repressors. Human HDACs are grouped into three classes based on their similarity to known yeast factors: class I HDACs are similar to the yeast transcriptional repressor yRPD3, class II HDACs to yHDA1 and class III HDACs to ySIR2. In this review, we focus on the biology of class II HDACs. These newly discovered enzymes have been implicated as global regulators of gene expression during cell differentiation and development. We discuss their emerging biological functions and the molecular mechanisms by which they are regulated.


Subject(s)
Histone Deacetylases/physiology , Animals , Histones/metabolism , Humans , Lysine/metabolism
15.
Cell Rep ; 19(8): 1558-1571, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28538176

ABSTRACT

CD4+ T cells differentiate into T helper cell subsets in feedforward manners with synergistic signals from the T cell receptor (TCR), cytokines, and lineage-specific transcription factors. Naive CD4+ T cells avoid spontaneous engagement of feedforward mechanisms but retain a prepared state. T cells lacking the adaptor molecule LAT demonstrate impaired TCR-induced signals yet cause a spontaneous lymphoproliferative T helper 2 (TH2) cell syndrome in mice. Thus, LAT constitutes an unexplained maintenance cue. Here, we demonstrate that tonic signals through LAT constitutively export the repressor HDAC7 from the nucleus of CD4+ T cells. Without such tonic signals, HDAC7 target genes Nur77 and Irf4 are repressed. We reveal that Nur77 suppresses CD4+ T cell proliferation and uncover a suppressive role for Irf4 in TH2 polarization; halving Irf4 gene-dosage leads to increases in GATA3+ and IL-4+ cells. Our studies reveal that naive CD4+ T cells are dynamically tuned by tonic LAT-HDAC7 signals.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , CD4-Positive T-Lymphocytes/metabolism , Histone Deacetylases/metabolism , Interferon Regulatory Factors/metabolism , Membrane Proteins/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Signal Transduction , Animals , Cell Nucleus/metabolism , Cell Proliferation , Gene Deletion , Gene Expression Regulation , Humans , Jurkat Cells , Mice , Phosphorylation , Th2 Cells/immunology
16.
18.
J Exp Med ; 212(5): 607-17, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25918343

ABSTRACT

The balance of effector and regulatory T cell function, dependent on multiple signals and epigenetic regulators, is critical to immune self-tolerance. Dysregulation of T helper 17 (Th17) effector cells is associated with multiple autoimmune diseases, including multiple sclerosis. Here, we report that Sirtuin 1 (SIRT1), a protein deacetylase previously reported to have an antiinflammatory function, in fact promotes autoimmunity by deacetylating RORγt, the signature transcription factor of Th17 cells. SIRT1 increases RORγt transcriptional activity, enhancing Th17 cell generation and function. Both T cell-specific Sirt1 deletion and treatment with pharmacologic SIRT1 inhibitors suppress Th17 differentiation and are protective in a mouse model of multiple sclerosis. Moreover, analysis of infiltrating cell populations during disease induction in mixed hematopoietic chimeras shows a marked bias against Sirt1-deficient Th17 cells. These findings reveal an unexpected proinflammatory role of SIRT1 and, importantly, support the possible therapeutic use of SIRT1 inhibitors against autoimmunity.


Subject(s)
Cell Differentiation/immunology , Multiple Sclerosis/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Sirtuin 1/immunology , Th17 Cells/immunology , Transcription, Genetic/immunology , Acetylation , Animals , Cell Differentiation/genetics , Disease Models, Animal , Mice , Mice, Knockout , Multiple Sclerosis/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Sirtuin 1/genetics , Th17 Cells/pathology , Transcription, Genetic/genetics
20.
J Biol Chem ; 280(14): 13762-70, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15623513

ABSTRACT

HDAC7, a class II histone deacetylase that is highly expressed in thymocytes, inhibits both transcription of the orphan steroid nuclear receptor Nur77 and induction of apoptosis in response to activation of the T-cell receptor (TCR). Here, we report that HDAC7 is exported to the cytoplasm by a calcium-independent signaling pathway after TCR activation. Protein kinase D1 (PKD1) was activated after TCR engagement, interacted with HDAC7, and phosphorylated three serines (Ser155, Ser318, and Ser448) at its N terminus, leading to its export from the nucleus. Mutation of Ser155, Ser318, and Ser448 blocked the nucleocytoplasmic shuttling of HDAC7 in response to TCR activation, as did overexpression of a kinase-inactive form of PKD1. Consistent with the regulatory role of HDAC7 in Nur77 expression, PKD1 activation led to the transcriptional activation of Nur77 via myocyte enhancer factor 2-binding sites in its promoter. In a mouse model of negative selection, PKD1 was activated during thymocyte activation. These observations indicate that PKD1 regulates the expression of Nur77 during thymocyte activation at least in part by phosphorylating HDAC7.


Subject(s)
Active Transport, Cell Nucleus/physiology , Histone Deacetylases/metabolism , Protein Kinase C/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/physiology , Amino Acid Sequence , Animals , Cell Line , DNA-Binding Proteins/metabolism , Enzyme Activation , Gene Expression Regulation , Histone Deacetylases/genetics , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Nuclear Receptor Subfamily 4, Group A, Member 1 , Phosphorylation , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Thymus Gland/cytology , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL