Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Analyst ; 148(1): 137-145, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36468752

ABSTRACT

In this work, we have meticulously tuned the carcinogenic Congo red dye to environmentally benign fluorescent carbon dots (CDs) by adopting a typical hydrothermal method without any additives. The as-synthesized CDs were extremely water soluble, exhibited an excitation wavelength independent emission with a high fluorescence quantum yield (46%) and were biocompatible. The microscopy results revealed that the CDs were quasi-spherical with a particle diameter of ∼5 nm. The structure and functional groups of the CDs were comprehensively investigated using Fourier-transform infrared, X-ray photoelectron and Raman spectroscopy analyses. These studies show that the CDs were intrinsically functionalized with -OH, N-H and CO groups. In the sensing experiments, the CDs selectively responded to Fe3+ ions over other analytes with a detection limit of 12 nM. The time-resolved fluorescence quenching measurements were used to decipher the sensing mechanism. For the onsite 'equipment-free' detection of iron, we have developed a CD adsorbed paper-based analytical tool. Furthermore, the selective nature of CDs was highly beneficial for detecting Fe3+ in non-heme metalloprotein (ferritin) and real water samples. Thus, the CDs produced from the Congo red dye could be a prospective asset to the bio-imaging and biosensing research fields.


Subject(s)
Ferritins , Quantum Dots , Congo Red , Quantum Dots/chemistry , Carbon/chemistry , Prospective Studies , Fluorescent Dyes/chemistry , Water/chemistry , Spectrometry, Fluorescence
2.
J Chem Inf Model ; 61(4): 1825-1839, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33843222

ABSTRACT

Excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) processes are widely exploited in the designing of organic materials for multifarious applications. This work explores the aftereffects of combining both ESIPT and ICT events in a single molecule, namely, N,N'-bis(salicylidene)-p-phenylenediamine (BSP) exploiting DFT and TD-DFT formalisms. The PBE0 functional employed in the present study is found to yield results with better accuracy for excited-state calculations. The results reveal that introduction of electron donor (-NH2) and electron acceptor (-NO2) substituents on BSP produces a strikingly red-shifted emission with respect to the corresponding emission from the unsubstituted analogue in polar solvents. This red-shifted emission originated due to the coupled effect of ESIPT and planar-ICT (PICT) processes from the coplanar geometry adopted by the substituted molecule (s-BSP). Based on the computed potential energy curves, the ground-state intramolecular proton transfer (GSIPT) was found to take place more favorably in s-BSP than in BSP under all solvent conditions. In the case of ESIPT, the barrier and relative energies of the phototautomers of s-BSP were slightly higher than BSP, which shows that simultaneous substitution of -NH2 and -NO2 groups causes slight perturbation to the ESIPT process. Overall, the computed results show that simultaneous substitution of suitable electron donor and acceptor substituents provides profitable changes in the photophysical properties of ESIPT molecules like BSP. These molecular-level insights will pave way for designing better materials for diverse applications.


Subject(s)
Phenylenediamines , Protons , Density Functional Theory , Models, Molecular
3.
Analyst ; 145(13): 4532-4539, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32420579

ABSTRACT

This work addresses the synthetic optimization of carbon dots (CDs) and their application in sensing picric acid from latent fingerprints by exploiting a smartphone-based RGB tool. The optimization of the synthesis of CDs is investigated towards achieving shorter reaction time, better product yield and fluorescence quantum efficiency. Precursors such as citric acid and thiourea were chosen for the synthesis of CDs. Among the various synthetic methodologies, it is found that the pyrolysis method offers ∼50% product yield within 15 min. The morphology and optical properties of the prepared CDs are characterized using the typical microscopic and spectroscopic techniques, respectively. The synthesized CDs exhibit quasi-spherical shape with an average particle size of 1.7 nm. The excitation dependent emissive properties of CDs are investigated by time resolved fluorescence spectroscopy. Furthermore, the excellent fluorescence properties (φ = 11%) of CDs are explored as a fluorescent fingerprint powder for the identification of latent fingerprints on various substrates. In addition, the presence of picric acid in latent fingerprints was detected. Furthermore, this study is extended to perform real time detection of fingerprints and harmful contaminants in fingerprints by utilizing a smartphone-based RGB color analysis tool. Based on these investigations, the prepared CDs could be a prospective fluorescent material in the field of forensics.

4.
Anal Chem ; 91(20): 13244-13250, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31542920

ABSTRACT

Developing a fluorescent probe for the selective and sensitive detection of explosives is a topic of continuous research interest. Additionally, underlying the principles behind the detection mechanism is indeed providing substantial information about the design of an efficient fluorescence probe. In this context, a pyrene-tethered 1-(pyridin-2-yl)imidazo[1,5-a]pyridine-based fluorescent probe (TL18) was developed and employed as a fluorescent chemosensor for nitro explosives. The molecular structure of TL18 was well-characterized by NMR and EI-MS spectrometric techniques. UV-visible absorption, steady-state, and time-resolved fluorescence spectroscopic techniques have been employed to explicate the photophysical properties of TL18. The fluorescent nature of the TL18 probe was explored for detection of nitro explosives. Intriguingly, the TL18 probe was selectively responsive to picric acid over other explosives. The quantitative analysis of the fluorescence titration studies of TL18 with picric acid proved that the probe achieved a detection limit of 63 nM. Further, DFT and QTAIM studies were used to establish the nature of the sensing mechanism of TL18. The hydrogen-bonding interactions are the reason for the imperative sensing property of TL18 for picric acid. Thus, our experimental and theoretical studies provide an adequate and appropriate prerequisite for an efficient fluorescent probe. Furthermore, a smartphone-interfaced portable fluorimeter module is developed to facilitate sensitive and real-time sensing of picric acid. This portable module was capable of detecting picric acid down to 99 nM. Eventually, these studies will have a significant impact on development and application of a new class of chemosensors for detection of explosives.


Subject(s)
Explosive Agents/analysis , Fluorescent Dyes/chemistry , Picrates/analysis , Pyrenes/chemistry , Smartphone , Fluorescent Dyes/chemical synthesis , Models, Chemical , Pyrenes/chemical synthesis , Quantum Theory , Spectrometry, Fluorescence
5.
Phys Chem Chem Phys ; 20(7): 5117-5127, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29392257

ABSTRACT

In this work, Zn-porphyrin with a hydantoin anchor (ZnPHy) was designed and synthesized for dye-sensitized solar cell (DSC) applications. The synthesized ZnPHy was well characterized using IR, NMR and mass spectral techniques, and satisfactory results were obtained. Cyclic voltammetry, UV-visible absorption, steady-state fluorescence, time-resolved fluorescence and transient absorption spectroscopic techniques were employed to elucidate the electrochemical and photophysical properties of ZnPHy. The obtained properties revealed that the synthesized ZnPHy can be used as a photosensitizer for DSC applications. The nature of ZnPHy binding onto the TiO2 surface was investigated using ATR-FTIR and UV-Vis absorption measurements. The amount of adsorbed ZnPHy on TiO2 surface was reasonably fit using the Langmuir adsorption isotherm, with a binding constant value of 1.03 × 105 M-1. Time-resolved measurements were used to elucidate the rate of electron injection and the regeneration and recombination kinetics for ZnPHy/TiO2 film. The ZnPHy showed a high electron injection rate with a ϕinj of 99%. Intriguingly, the rate of electron recombination is much slower than the rates reported for carboxyl-based Zn-porphyrins. Such a high electron injection and slow electron recombination rate are beneficial to produce long-lived electrical current in a photovoltaic device. Thus, the ZnPHy-sensitized TiO2 electrode showed the best photovoltaic performance, with the short-circuit photocurrent density (JSC), open-circuit voltage (VOC) and fill factor (ff) of 3.49 mA cm-2, 0.6 V and 0.52, respectively, yielding an overall conversion efficiency (η) of 1.01%. For comparison, the ZnCOOH-sensitized electrode was also fabricated under the same conditions and yielded the η value of 0.84%. Hence, the hydantoin moiety could be a potential alternative anchoring group for DSC applications.

6.
Phys Chem Chem Phys ; 20(9): 6264-6273, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29431799

ABSTRACT

The geometry (twist vs. planar) of a dye is one of the most pivotal factors for determining intramolecular charge transfer (ICT), light harvesting and photovoltaic properties of dye-sensitized solar cells. In order to comprehend the role of dye geometry on the above properties, we have devised the pyrene based D-π-A dyes namely 2-cyano-3-(5-pyren-1-yl-furan-2-yl)-acrylic acid (PFCC) and 2-cyano-3-(5-pyren-1-ylethynyl-furan-2-yl)-acrylic acid (PEFCC). The synthesized pyrene dyes were well characterized by NMR and EI-MS spectrometry. In both the dyes, the donor (pyrene) and acceptor (cyanoacrylic acid) segments remained the same. The varied π-spacers were furan and ethynyl furan. The influences of the ethynyl spacer on the energy levels, light absorption, dynamics of excited states and photovoltaic properties of the DSCs were systematically investigated via theoretical calculations and spectroscopic measurements. UV-visible absorption spectral measurements indicated that the introduction of the ethynyl spacer enhances the molar absorptivity of a dye (PEFCC) in the order of 2, but does not shift the absorption range, which is consistent with the results obtained from density functional theory (DFT) calculations. The theoretical analysis indicated that the charge transfer transition is mainly constituted of the HOMO to the LUMO that were found to be located on donor and acceptor segments, respectively, which is supportive for efficient charge separation and electron injection processes. TDDFT calculations highlighted that the LUMO of the PEFCC dye is more stabilized by the incorporation of the ethynyl group between the pyrene and furan moieties that aid to inject electrons efficiently into TiO2 thereby resulting in an enhanced power conversion efficiency of 2.47% when compared to the PFCC dye. Notably, the overall conversion efficiency of the PEFCC dye reached 60% with respect to that of an N719-based device (4.12%) fabricated under similar conditions. Transient absorption kinetic studies demonstrated that a slower charge recombination rate is an essential factor behind enhanced efficiencies in PEFCC based cells.

7.
Phys Chem Chem Phys ; 19(8): 6153-6163, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28191561

ABSTRACT

A recently reported triphenylamine (TPA) group in conjugation with a benzothiadiazole (BTD) moiety opens up the possibility for designing new organic sensitizers for solar cell applications that are amenable for structural tuning. Hence, seven new TPA molecules were designed from two experimentally reported molecules. The optoelectronic properties, including the absorption and emission spectra of the TPA derivatives, were studied via density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Different π-linkers were screened to understand the role of π-linkers in altering the optoelectronic properties of these molecules. Our results show that furan moieties bring planarity to the molecule and show reduced HOMO-LUMO gaps. All these molecules show excellent delocalization of π-electrons. TDDFT calculations show that furan-substituted TPA (TPA9) has the highest absorption maxima. Interestingly, the thiophene-substituted TPA (TPA7) was found to have a high emission maxima as it achieved planarity in the excited state. There is an excellent correlation observed between the computed optoelectronic properties and calculated HOMO-LUMO gaps. Overall, this study throws light on the role of π-linkers in the photophysical properties of TPA derivatives and provides useful clues in designing new molecules for optoelectronic applications.

8.
Phys Chem Chem Phys ; 19(4): 3125-3135, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28083594

ABSTRACT

Pyrene derivatives show immense potential as sensitizers for dye-sensitized solar cells (DSCs). Therefore, this work focuses on the impact of π-spacers on the photophysical, electrochemical and photovoltaic properties of pyrene based D-π-A dyes, since the insertion of π-spacers is one of the doable strategies to improve the light harvesting properties of the dye. In this respect, three new pyrene based D-π-A dyes have been synthesized and characterized by 1H, 13C NMR, and elemental analyses and EI-MS spectrometry. The selected π-spacers are benzene, thiophene and furan. Compared with a benzene spacer, the introduction of a heterocyclic ring spacer reduces the band gap of the dye and brings about the broadening of the absorption spectra to the longer wavelength region through intramolecular charge-transfer (ICT). Combined experimental and theoretical studies were performed to investigate the ICT process involved in the pyrene derivatives. The profound solvatochromism with increased nonradiative rate constants (knr) has been construed in terms of ICT from the pyrene core to rhodanine-3-acetic acid via conjugated π-spacers. Electrochemical data also reveal that the HOMO and LUMO energy levels are fine-tuned by incorporating different π-spacers between pyrene and rhodanine-3-acetic acid. On the basis of the optimized DSC test conditions, the best performance was found for PBRA, in which a benzene group is the conjugated π-spacer. The divergence in the photovoltaic behaviors of these dyes was further explicated by femtosecond fluorescence and electrochemical impedance spectroscopy.

9.
Phys Chem Chem Phys ; 18(19): 13332-45, 2016 05 21.
Article in English | MEDLINE | ID: mdl-27121202

ABSTRACT

Anchoring groups play an important role in dye sensitized solar cells (DSCs). In order to acquire a suitable anchoring group for DSCs, a deeper understanding of the effect of anchoring groups on the ground and excited state properties of the dye is significant. In this context, various anchoring group connected pyrene derivatives are successfully synthesized and well characterized by using (1)H, (13)C-NMR, FT-IR and EI-MS spectrometry. The anchoring groups employed are carboxylic acid, malonic acid, acrylic acid, malononitrile, cyanoacrylic acid, rhodanine and rhodanine-3-acetic acid. The optimized geometries, HOMO-LUMO energy gap, light harvesting efficiency (LHE) and electronic absorption spectra of these dyes are studied by using density functional theory (DFT) calculations. The results show that pyrene connected with anchoring groups with weak electron pulling strength (PC, PAC and PMC) has a larger HOMO-LUMO energy gap, whereas that connected with anchoring groups with strong electron pulling strength (PCC, PMN, PR and PRA) has a reduced HOMO-LUMO energy gap. These molecules with a reduced energy gap are primarily preferred for DSC applications. Moreover, P, PC, PAC and PMC molecules undergo π→π* transition, whereas PCC, PMN, PR and PRA molecules show significant charge transfer along with π→π* transition. UV-visible absorption spectral studies on these dyes reveal that connecting various anchoring groups with different electron pulling abilities enables the pyrene chromophore to absorb in the longer wavelength region. Notably, an efficient bathochromic shift is observed for PCC, PMN, PR and PRA molecules in both electronic absorption and fluorescence spectral measurements, which suggests that the excitation is delocalized throughout the entire π-system of the molecules. Both theoretical and spectral studies reveal that dyes with an ICT character (PCC, PMN, PR and PRA) are suitable for dye sensitized solar cell applications.

10.
J Phys Chem A ; 120(36): 7121-9, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27537491

ABSTRACT

Sodium titanate nanosheets (NaTiO2 NS) have been prepared by a new method and completely characterized by TEM, SEM, XRD, EDX, and XPS techniques. The sensitization of nanosheets is carried out with Zn protoporphyrin IX (ZnPPIX). The emission intensity of ZnPPIX is quenched by NaTiO2 NS, and the dominant process for this quenching has been attributed to the process of photoinduced electron injection from excited ZnPPIX to the nanosheets. Time resolved fluorescence measurement was used to elucidate the process of electron injection from the singlet state of ZnPPIX to the conduction band of NaTiO2 NS. Electron injection from the dye to the semiconductor is very fast (ket ≈ 10(11) s(-1)), much faster than previously reported rates. The large two-dimensional surface offered by the NaTiO2 NS for interaction with the dye and the favorable driving force for electron injection from ZnPPIX to NaTiO2 NS (ΔGinj = -0.66 V) are the two important factors responsible for such efficient electron injection. Thus, NaTiO2 NS can serve as an effective alternative to the use of TiO2 nanoparticles in dye sensitized solar cells (DSSCs).

11.
Phys Chem Chem Phys ; 17(43): 28647-57, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26444694

ABSTRACT

An electron rich donor moiety plays an important role in dye sensitized solar cells (DSCs). In order to attain a suitable donor moiety for DSCs, a deeper understanding of the role of a donor moiety in the dye excited state is significant. In this context, different arylamine dye-based electron donor moieties (TRA, CRA and PyRA) were successfully synthesized and well characterized using (1)H-NMR, (13)C-NMR and EI-MS spectrometry. Their photophysical properties and solvatochromic behavior were studied using UV-visible absorption, steady state and time resolved fluorescence spectroscopic techniques. The absorption of arylamine dyes is due to intramolecular charge transfer (ICT) between the donor and rhodanine-3-acetic acid via a π-bridge, which is further confirmed by DFT calculations. Lippert-Mataga analysis on the solvatochromic data implies that these molecules are more polar in the excited state, which is additional support for ICT. Furthermore, nanocrystalline TiO2-based dye sensitized solar cells (DSCs) were fabricated using these dyes to investigate the influence of donor moieties on their photovoltaic performance. The overall power conversion efficiencies of 2.57%, 1.68% and 1.25% were obtained for the TRA, PyRA and CRA dyes, respectively. The enhanced power conversion efficiency of TRA is due to a longer lifetime of injected electrons as demonstrated by the electrochemical impedance spectroscopy (EIS) measurements.

12.
Nanotechnology ; 24(19): 195601, 2013 May 17.
Article in English | MEDLINE | ID: mdl-23579056

ABSTRACT

Template-capped TiO2 nanostructures have been synthesized. In certain template conditions, TiO2 hexagons are found to form. These hexagonal structures can be effectively sensitized by fluorescein dye without any change in the protonation state of the dye. Bare TiO2 nanoparticles are not so useful for sensitization with dyes like fluorescein as they alter the dye protonation state. The novelty of this work is twofold-the hitherto elusive hexagonal phase of TiO2 nanoparticles has been stabilized and the synthesis of TiO2 in the rutile phase has been achieved under mild conditions.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123166, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37481841

ABSTRACT

In this study, a highly fluorescent and receptor-free phenothiazine derivative (PDAB) was developed to detect picric acid. A combination of steady-state and time-resolved fluorescence studies was conducted to examine the excited state behavior of PDAB with picric acid in solution. The PDAB probe displayed a significant degree of selectivity and was highly sensitive to picric acid, with an extremely low detection limit of 9.82 nM. Time-resolved fluorescence quenching studies exhibit direct evidence of an inner filter effect-based sensing mechanism. Using the Parker equation, a thorough analysis was done to correct the inner filter effect on the sensing of picric acid. Overall, these studies provide critical information on the sensing mechanism for picric acid detection.

14.
J Mol Model ; 29(3): 79, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36856937

ABSTRACT

BACKGROUND: In the present work, DFT and time-dependent DFT calculations were performed to investigate the role of anchoring groups on the photophysical properties and reveal structure-property correlations of triphenylamine (TPA) derivatives. The selected anchoring groups are tetrazole, acrylamide, hydantoin, and rhodanine. RESULTS: Our results show that the different anchoring groups employed alter the planarity, intramolecular charge transfer properties, and HOMO-LUMO gap and hence influence the optoelectronic properties of the dyes. Although all molecules fulfill the basic requirements with suitable energy levels, band gap, absorption, and charge transfer properties, the dye with rhodanine acceptor (TPA4) was the most promising candidate due to its lowest HOMO-LUMO gap, red-shifted highest λmax absorption value, better ICT pattern, low total reorganization energy, and good electron injection properties. Overall, it is anticipated that the results of this investigation will point to new avenues for the experimental fabrication of remarkably effective metal-free organic dyes for solar cell applications.

15.
Anal Methods ; 14(5): 518-525, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35029617

ABSTRACT

In this work, we have employed an intramolecular charge transfer-based DMN colorimetric probe for the rapid naked-eye detection of cyanide ions in solution as well as real water samples. The intermolecular interaction between the DMN probe and cyanide ions in solution was investigated using a combination of spectroscopic and computational methods in this study. The DMN probe exhibited a selective colorimetric response for cyanide ions over the other anions exposed. The cyanide sensing mechanism of the probe has been investigated by 1H NMR titration and density functional theory calculations. The results reveal that the colorimetric response of the DMN probe is due to the Michael adduct formation in the ß-conjugated position of the dicyanovinyl group with cyanide, which blocks intramolecular charge transfer transition. Under optimized experimental conditions, the DMN probe showed a linear plot in the concentration range of 0.01-0.25 µM, with a detection limit of 23 nM. Further, a 3D printed portable accessory for the smartphone and an open-source android application is developed to suit the DMN probe for on-site work. In addition, we have developed the microfluidic paper-based analytical device that could selectively detect cyanide ions at very low concentration using a colorimetric DMN probe. In addition, the DMN probe was effectively used to determine the cyanide ion in a variety of water samples.


Subject(s)
Colorimetry , Cyanides , Anions/chemistry , Colorimetry/methods , Cyanides/chemistry , Magnetic Resonance Spectroscopy
16.
J Phys Chem B ; 126(21): 3831-3843, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35583491

ABSTRACT

This work aimed to investigate the interaction of bovine serum albumin with newly synthesized potent new pyrene derivatives (PS1 and PS2), which might prove useful to have a better antibacterial character as found for similar compounds in the previous report [Low et al. Bioconjugate Chemistry 2014, 12, 2269-2284]. However, to date, binding studies with plasma protein are still unknown. Steady-state fluorescence spectroscopy and lifetime fluorescence studies show that the static interaction binding mode and binding constants of PS1 and PS2 are 7.39 and 7.81 [Kb × 105 (M-1)], respectively. The experimental results suggest that hydrophobic forces play a crucial role in interacting pyrene derivatives with BSA protein. To verify this, molecular docking and molecular dynamics simulations were performed to predict the nature of the interaction and the dynamic behavior of the two compounds in the BSA complex, PS1 and PS2, under physiological conditions of pH = 7.1. In addition, the free energies of binding for the BSA-PS1 and BSA-PS2 complexes were estimated at 300 K based on the molecular mechanics of the Poisson-Boltzmann surface (MMPBSA) with the Gromacs package. PS2 was found to have a higher binding affinity than PS1. To determine the behavior of the orbital transitions in the ground state geometry, we found that both compounds have similar orbital transitions from HOMO-LUMO via π → π* and HOMO-1-LUMO+1 via n → π*, which was included in the FMO analysis. A cytotoxicity study was performed to determine the toxicity of the compounds. Based on the MD study, the stability of the compounds with BSA and the dynamic binding modes were further revealed, as well as the nature of the binding force components involved and the important residues involved in the binding process. From the binding energy analysis, it can be assumed that PS2 may be more active than PS1.


Subject(s)
Molecular Dynamics Simulation , Serum Albumin, Bovine , Binding Sites , Molecular Docking Simulation , Protein Binding , Pyrenes , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Thermodynamics
17.
J Phys Chem A ; 115(16): 3679-90, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-20961148

ABSTRACT

Time resolved absorption spectroscopy has been used to study photoinduced electron injection and charge recombination in Zn-porphyrin sensitized nanostructured TiO(2) electrodes. The electron transfer dynamics is correlated to the performance of dye sensitized solar cells based on the same electrodes. We find that the dye/semiconductor binding can be described with a heterogeneous geometry where the Zn-porphyrin molecules are attached to the TiO(2) surface with a distribution of tilt angles. The binding angle determines the porphyrin-semiconductor electron transfer distance and charge transfer occurs through space, rather than through the bridge connecting the porphyrin to the surface. For short sensitization times (1 h), there is a direct correlation between solar cell efficiency and amplitude of the kinetic component due to long-lived conduction band electrons, once variations in light harvesting (surface coverage) have been taken into account. Long sensitization time (12 h) results in decreased solar cell efficiency because of decreased efficiency of electron injection.


Subject(s)
Fluorescent Dyes/chemistry , Metalloporphyrins/chemistry , Solar Energy , Titanium/chemistry , Zinc/chemistry , Electrodes , Electrons , Molecular Structure , Nanostructures/chemistry , Particle Size , Photochemical Processes , Semiconductors , Stereoisomerism , Surface Properties
18.
Talanta ; 235: 122733, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517601

ABSTRACT

The microfluidic paper-based analytical devices (µPADs) have grown-up swiftly over the decade due to its low cost, simple fabrication procedure, resource-limitedness, non-toxicity and their environmentally benign nature. The µPADs, also identified as point-of-care devices or health care devices have successfully applied in several fields such as diagnostics, biological, food safety, environmental, electrochemical and most importantly colorimetric/fluorimetric sensors, owing to the attractive passive motions of analyte without any external forces. In recent years, a large number of colorimetric and fluorimetric probes have been reported that can selectively recognize the analytes in µPADs. However, there is no organized review on its structure-activity relationship. In this review, we have focused to summarize the colorimetric and fluorimetric probes utilized in µPADs. This review discuss about the relationships between the structure and functions of various probes as signaling units of the efficient µPADs. The probes including nanomaterials, nanozymes, polymers and organic molecules, their structural activity with regard to sensing performances along with their limit of detection are also discussed. This review is expected to assist readers for better understanding of the sensing mechanisms of various chemo and bio-probes utilized in µPADs, as well as promote their advancement in the field. On the other hand, this review also helps the researchers for enhancement of µPADs and paves way for synergistic application of existing molecular probes as an effective diagnostic tool for the worldwide pandemic novel corona virus COVID-19.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Humans , Lab-On-A-Chip Devices , Microfluidics , Paper , SARS-CoV-2
19.
Food Funct ; 12(11): 5038-5050, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33960359

ABSTRACT

Rheumatoid Arthritis (RA) is an autoimmune disease that commences as inflammation and progressively destroys the articular joint. In this study, we assess the anti-rheumatic potential of the monoterpenoid class of thymol conjugated with Carbon Dots (CDs). Waste biomass in the form of dried rose petals was chosen as a precursor for the synthesis of CDs via a one-step hydrothermal bottom-up methodology. The prepared CDs exhibited absorption in the near-visible region, and unique excitation-dependent emission behaviour was confirmed from UV-Visible and fluorescence measurements. The surface morphology of CDs was confirmed by SEM and HR-TEM analysis to be quasi-spherical particles with an average size of ∼5-6 nm. The presence of various functional moieties (hydroxyl, carbonyl, and amino) was confirmed via FT-IR measurement. The graphitization of CDs was confirmed by the D and G bands for sp2 and sp3 hybridization, respectively, through Raman analysis. Esterification methodology was adopted to prepare the CDs-thymol conjugate and confirmed via FT-IR analysis. CDs play the role of a nanocarrier for thymol, an anti-arthritic agent. The bioactive compound of thymol showed potent anti-arthritic activity against RA targets through in silico docking studies. Further, the in vivo studies revealed that CDs-thymol conjugates (10 mg per kg body weight) showed a significant reduction in rat paw volume along with reduced levels of RF and CRP (2.23 ± 0.42 IU ml-1 and 16.96 ± 0.22 mg ml-1) when compared to the disease control rats. X-ray radiography and ultrasonic imaging revealed less bone destruction, joint derangement, and swelling in arthritis-induced Wistar rats. They could also potentially improve the Hb (14.14 ± 0.19), RBC (6.01 ± 0.11), PCV (6.01 ± 0.11) levels and elevate the status of antioxidant enzymes (GPx, SOD, MDA), and the activity was comparable to the standard drug, ibuprofen (10 mg kg-1), suggesting that the CDs-thymol conjugate at 10 mg kg-1 could act as a strong anti-arthritic agent. This work is evidence for the utilization of waste biomass as a value-added product such as a nanocarrier for biomedical applications.


Subject(s)
Antirheumatic Agents/chemistry , Antirheumatic Agents/pharmacology , Carbon/chemistry , Quantum Dots , Thymol/chemistry , Animals , Antioxidants , Arthritis, Rheumatoid/drug therapy , Female , Interleukins/chemistry , Matrix Metalloproteinase 1/chemistry , Matrix Metalloproteinase 3/chemistry , Molecular Docking Simulation , Rats , Rats, Wistar , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Spectroscopy, Fourier Transform Infrared , Transforming Growth Factor beta/chemistry
20.
ACS Omega ; 5(12): 7025-7031, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32258938

ABSTRACT

Recycling of waste into valuable products plays a significant role in sustainable development. Herein, we report the conversion of vehicle exhaust waste soot into water-soluble fluorescent carbon dots via a simple acid refluxion method. The obtained carbon dots were characterized using microscopic and spectroscopic techniques. Microscopic techniques reveal that the prepared carbon material is spherical in shape with an average particle size of ∼4 nm. Spectroscopic studies exhibited that the carbon dots are emissive in nature, and the emission is excitation-dependent. Further, the prepared carbon dots were successfully utilized as a fluorescent probe for the detection of tartrazine with a limit of detection of 26 nM. The sensitivity of carbon dots has also been realized by the detection of trace amounts of tartrazine in commercial soft drinks. Overall, this work demonstrates the conversion air pollutant soot into value-added fluorescent nanomaterials toward sensing applications.

SELECTION OF CITATIONS
SEARCH DETAIL