Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nature ; 623(7988): 713-717, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968402

ABSTRACT

One-dimensional systems exhibiting a continuous symmetry can host quantum phases of matter with true long-range order only in the presence of sufficiently long-range interactions1. In most physical systems, however, the interactions are short-ranged, hindering the emergence of such phases in one dimension. Here we use a one-dimensional trapped-ion quantum simulator to prepare states with long-range spin order that extends over the system size of up to 23 spins and is characteristic of the continuous symmetry-breaking phase of matter2,3. Our preparation relies on simultaneous control over an array of tightly focused individual addressing laser beams, generating long-range spin-spin interactions. We also observe a disordered phase with frustrated correlations. We further study the phases at different ranges of interaction and the out-of-equilibrium response to symmetry-breaking perturbations. This work opens an avenue to study new quantum phases and out-of-equilibrium dynamics in low-dimensional systems.

2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34686598

ABSTRACT

Phase transitions are emergent phenomena where microscopic interactions drive a disordered system into a collectively ordered phase. Near the boundary between two phases, the system can exhibit critical, scale-invariant behavior. Here, we report on a second-order phase transition accompanied by critical behavior in a system of warm cesium spins driven by linearly polarized light. The ordered phase exhibits macroscopic magnetization when the interactions between the spins become dominant. We measure the phase diagram of the system and observe the collective behavior near the phase boundaries, including power-law dependence of the magnetization and divergence of the susceptibility. Out of equilibrium, we observe a critical slowdown of the spin response time by two orders of magnitude, exceeding 5 s near the phase boundary. This work establishes a controlled platform for investigating equilibrium and nonequilibrium properties of magnetic phases.

3.
Phys Rev Lett ; 131(3): 033604, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37540877

ABSTRACT

Trapped atomic ion crystals are a leading platform for quantum simulations of spin systems, with programmable and long-range spin-spin interactions mediated by excitations of phonons in the crystal. We describe a complementary approach for quantum simulations of bosonic systems using phonons in trapped-ion crystals, here mediated by excitations of the trapped-ion spins. The scheme enables a high degree of programability across a dense graph of bosonic couplings, utilizing long-lived collective phonon modes in a trapped-ion chain. As such, it is well suited for tackling hard problems such as boson sampling and simulations of long-range bosonic and spin-boson Hamiltonians.

4.
Phys Rev Lett ; 128(1): 013401, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35061487

ABSTRACT

Noble-gas spins feature hours-long coherence times, owing to their great isolation from the environment, and find practical usage in various applications. However, this isolation leads to extremely slow preparation times, relying on weak spin transfer from an electron-spin ensemble. Here we propose a controllable mechanism to enhance this transfer rate. We analyze the spin dynamics of helium-3 atoms with hot, optically excited potassium atoms and reveal the formation of quasibound states in resonant binary collisions. We find a resonant enhancement of the spin-exchange cross section by up to 6 orders of magnitude and 2 orders of magnitude enhancement for the thermally averaged, polarization rate coefficient. We further examine the effect for various other noble gases and find that the enhancement is universal. We outline feasible conditions under which the enhancement may be experimentally observed and practically utilized.

5.
Phys Rev Lett ; 129(6): 063603, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36018637

ABSTRACT

We describe a simple protocol for the single-step generation of N-body entangling interactions between trapped atomic ion qubits. We show that qubit state-dependent squeezing operations and displacement forces on the collective atomic motion can generate full N-body interactions. Similar to the Mølmer-Sørensen two-body Ising interaction at the core of most trapped ion quantum computers and simulators, the proposed operation is relatively insensitive to the state of motion. We show how this N-body gate operation allows for the single-step implementation of a family of N-bit gate operations such as the powerful N-Toffoli gate, which flips a single qubit if and only if all other N-1 qubits are in a particular state.

6.
Phys Rev Lett ; 124(4): 043602, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058754

ABSTRACT

Nuclear spins of noble-gas atoms are exceptionally isolated from the environment and can maintain their quantum properties for hours at room temperature. Here we develop a mechanism for entangling two such distant macroscopic ensembles by using coherent light input. The interaction between the light and the noble-gas spins in each ensemble is mediated by spin-exchange collisions with alkali-metal spins, which are only virtually excited. The relevant conditions for experimental realizations with ^{3}He or ^{129}Xe are outlined.

7.
Phys Rev Lett ; 115(11): 113003, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26406827

ABSTRACT

Random spin-exchange collisions in warm alkali vapor cause rapid decoherence and act to equilibrate the spin state of the atoms in the vapor. In contrast, here we demonstrate experimentally and theoretically a coherent coupling of one alkali species to another species, mediated by these random collisions. We show that the minor species (potassium) inherits the magnetic properties of the dominant species (rubidium), including its lifetime (T_{1}), coherence time (T_{2}), gyromagnetic ratio, and spin-exchange relaxation-free magnetic-field threshold. We further show that this coupling can be completely controlled by varying the strength of the magnetic field. Finally, we explain these phenomena analytically by mode mixing of the two species via spin-exchange collisions.

8.
Artif Intell Med ; 154: 102927, 2024 08.
Article in English | MEDLINE | ID: mdl-38991398

ABSTRACT

Stroke stands as a major global health issue, causing high death and disability rates and significant social and economic burdens. The effectiveness of existing stroke risk assessment methods is questionable due to their use of inconsistent and varying biomarkers, which may lead to unpredictable risk evaluations. This study introduces an automatic deep learning-based system for predicting stroke risk (both ischemic and hemorrhagic) and estimating the time frame of its occurrence, utilizing a comprehensive set of known retinal biomarkers from fundus images. Our system, tested on the UK Biobank and DRSSW datasets, achieved AUROC scores of 0.83 (95% CI: 0.79-0.85) and 0.93 (95% CI: 0.9-0.95), respectively. These results not only highlight our system's advantage over established benchmarks but also underscore the predictive power of retinal biomarkers in assessing stroke risk and the unique effectiveness of each biomarker. Additionally, the correlation between retinal biomarkers and cardiovascular diseases broadens the potential application of our system, making it a versatile tool for predicting a wide range of cardiovascular conditions.


Subject(s)
Biomarkers , Deep Learning , Stroke , Humans , Biomarkers/blood , Risk Assessment/methods , Prognosis , Stroke/diagnosis , Retina/diagnostic imaging , Male , Female , Aged , Middle Aged , Risk Factors
9.
Phys Rev Lett ; 110(26): 263004, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23848871

ABSTRACT

Relaxation of the Larmor magnetic moment by spin-exchange collisions has been shown to diminish for high alkali densities, resulting from the linear part of the collisional interaction. In contrast, we demonstrate both experimentally and theoretically the elimination of spin-exchange relaxation of high magnetic moments (birefringence) in alkali vapor. This elimination originates from the nonlinear part of the spin-exchange interaction, as a scattering process of the Larmor magnetic moment. We find counterintuitively that the threshold magnetic field is the same as in the Larmor case, despite the fact that the precession frequency is twice as large.

10.
Nat Commun ; 14(1): 5784, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723175

ABSTRACT

Ultralight axion-like particles are well-motivated relics that might compose the cosmological dark matter and source anomalous time-dependent magnetic fields. We report on terrestrial bounds from the Noble And Alkali Spin Detectors for Ultralight Coherent darK matter (NASDUCK) collaboration on the coupling of axion-like particles to neutrons and protons. The detector uses nuclei of noble-gas and alkali-metal atoms and operates in the Spin-Exchange Relaxation-Free (SERF) regime, achieving high sensitivity to axion-like dark matter fields. Conducting a month-long search, we cover the mass range of 1.4 × 10-12 eV/c2 to 2 × 10-10 eV/c2 and provide limits which supersede robust astrophysical bounds, and improve upon previous terrestrial constraints by over two orders of magnitude for many masses within this range for protons, and up to two orders of magnitude for neutrons. These are the sole reliable terrestrial bounds reported on the coupling of protons with axion-like dark matter, covering an unexplored terrain in its parameter space.

11.
Sci Adv ; 9(46): eadh2594, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37976365

ABSTRACT

Simulations of nuclear magnetic resonance (NMR) experiments can be an important tool for extracting information about molecular structure and optimizing experimental protocols but are often intractable on classical computers for large molecules such as proteins and for protocols such as zero-field NMR. We demonstrate the first quantum simulation of an NMR spectrum, computing the zero-field spectrum of the methyl group of acetonitrile using four qubits of a trapped-ion quantum computer. We reduce the sampling cost of the quantum simulation by an order of magnitude using compressed sensing techniques. We show how the intrinsic decoherence of NMR systems may enable the zero-field simulation of classically hard molecules on relatively near-term quantum hardware and discuss how the experimentally demonstrated quantum algorithm can be used to efficiently simulate scientifically and technologically relevant solid-state NMR experiments on more mature devices. Our work opens a practical application for quantum computation.

12.
Sci Adv ; 8(5): eabl8919, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35119933

ABSTRACT

Dark matter is one of the greatest mysteries in physics. It interacts via gravity and composes most of our universe, but its elementary composition is unknown. We search for nongravitational interactions of axion-like dark matter with atomic spins using a precision quantum detector. The detector is composed of spin-polarized xenon gas that can coherently interact with a background dark matter field as it traverses through the galactic dark matter halo. Conducting a 5-month-long search, we report on the first results of the Noble and Alkali Spin Detectors for Ultralight Coherent darK matter (NASDUCK) collaboration. We limit ALP-neutron interactions in the mass range of 4 × 10-15 to 4 × 10-12 eV/c2 and improve upon previous terrestrial bounds by up to 1000-fold for masses above 4 × 10-13 eV/c2. We also set bounds on pseudoscalar dark matter models with quadratic coupling.

13.
J Diabetes Sci Technol ; 16(6): 1401-1409, 2022 11.
Article in English | MEDLINE | ID: mdl-34549633

ABSTRACT

BACKGROUND: Medical image segmentation is a well-studied subject within the field of image processing. The goal of this research is to create an AI retinal screening grading system that is both accurate and fast. We introduce a new segmentation network which achieves state-of-the-art results on semantic segmentation of color fundus photographs. By applying the net-work to identify anatomical markers of diabetic retinopathy (DR) and diabetic macular edema (DME), we collect sufficient information to classify patients by grades R0 and R1 or above, M0 and M1. METHODS: The AI grading system was trained on screening data to evaluate the presence of DR and DME. The core algorithm of the system is a deep learning network that segments relevant anatomical features in a retinal image. Patients were graded according to the standard NHS Diabetic Eye Screening Program feature-based grading protocol. RESULTS: The algorithm performance was evaluated with a series of 6,981 patient retinal images from routine diabetic eye screenings. It correctly predicted 98.9% of retinopathy events and 95.5% of maculopathy events. Non-disease events prediction rate was 68.6% for retinopathy and 81.2% for maculopathy. CONCLUSION: This novel deep learning model was trained and tested on patient data from annual diabetic retinopathy screenings can classify with high accuracy the DR and DME status of a person with diabetes. The system can be easily reconfigured according to any grading protocol, without running a long AI training procedure. The incorporation of the AI grading system can increase the graders' productivity and improve the final outcome accuracy of the screening process.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Humans , Diabetic Retinopathy/diagnosis , Neural Networks, Computer , Diagnostic Techniques, Ophthalmological , Photography/methods
14.
Sci Adv ; 7(14)2021 Apr.
Article in English | MEDLINE | ID: mdl-33811073

ABSTRACT

Nuclear spins of noble gases feature extremely long coherence times but are inaccessible to optical photons. Here, we realize a coherent interface between light and noble-gas spins that is mediated by alkali atoms. We demonstrate the optical excitation of the noble-gas spins and observe the coherent back action on the light in the form of high-contrast two-photon spectra. We report on a record two-photon linewidth of 5 ± 0.7 mHz above room temperature, corresponding to a 1-min coherence time. This experiment provides a demonstration of coherent bidirectional coupling between light and noble-gas spins, rendering their long-lived spin coherence accessible for manipulations in the optical domain.

15.
Nat Commun ; 9(1): 2074, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29849088

ABSTRACT

Light storage, the controlled and reversible mapping of photons onto long-lived states of matter, enables memory capability in optical quantum networks. Prominent storage media are warm alkali vapors due to their strong optical coupling and long-lived spin states. In a dense gas, the random atomic collisions dominate the lifetime of the spin coherence, limiting the storage time to a few milliseconds. Here we present and experimentally demonstrate a storage scheme that is insensitive to spin-exchange collisions, thus enabling long storage times at high atomic densities. This unique property is achieved by mapping the light field onto spin orientation within a decoherence-free subspace of spin states. We report on a record storage time of 1 s in room-temperature cesium vapor, a 100-fold improvement over existing storage schemes. Furthermore, our scheme lays the foundations for hour-long quantum memories using rare-gas nuclear spins.

SELECTION OF CITATIONS
SEARCH DETAIL