ABSTRACT
Mutations that impact immune cell migration and result in immune deficiency illustrate the importance of cell movement in host defense. In humans, loss-of-function mutations in DOCK8, a guanine exchange factor involved in hematopoietic cell migration, lead to immunodeficiency and, paradoxically, allergic disease. Here, we demonstrate that, like humans, Dock8-/- mice have a profound type 2 CD4+ helper T (TH2) cell bias upon pulmonary infection with Cryptococcus neoformans and other non-TH2 stimuli. We found that recruited Dock8-/-CX3CR1+ mononuclear phagocytes are exquisitely sensitive to migration-induced cell shattering, releasing interleukin (IL)-1ß that drives granulocyte-macrophage colony-stimulating factor (GM-CSF) production by CD4+ T cells. Blocking IL-1ß, GM-CSF or caspase activation eliminated the type-2 skew in mice lacking Dock8. Notably, treatment of infected wild-type mice with apoptotic cells significantly increased GM-CSF production and TH2 cell differentiation. This reveals an important role for cell death in driving type 2 signals during infection, which may have implications for understanding the etiology of type 2 CD4+ T cell responses in allergic disease.
Subject(s)
Guanine Nucleotide Exchange Factors/deficiency , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Th2 Cells/immunology , Th2 Cells/metabolism , Animals , Biomarkers , Caspases/metabolism , Cell Movement/genetics , Cell Movement/immunology , Cytokines/genetics , Cytokines/metabolism , Disease Susceptibility , Gene Expression , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Mice , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/metabolism , Phagocytes/immunology , Phagocytes/metabolism , Signal TransductionABSTRACT
The regulation of inflammatory responses and pulmonary disease during SARS-CoV-2 infection is incompletely understood. Here we examine the roles of the prototypic pro- and anti-inflammatory cytokines IFNγ and IL-10 using the rhesus macaque model of mild COVID-19. We find that IFNγ drives the development of 18fluorodeoxyglucose (FDG)-avid lesions in the lungs as measured by PET/CT imaging but is not required for suppression of viral replication. In contrast, IL-10 limits the duration of acute pulmonary lesions, serum markers of inflammation and the magnitude of virus-specific T cell expansion but does not impair viral clearance. We also show that IL-10 induces the subsequent differentiation of virus-specific effector T cells into CD69+CD103+ tissue resident memory cells (Trm) in the airways and maintains Trm cells in nasal mucosal surfaces, highlighting an unexpected role for IL-10 in promoting airway memory T cells during SARS-CoV-2 infection of macaques.
Subject(s)
COVID-19 , Interleukin-10 , Memory T Cells , Animals , COVID-19/immunology , Disease Models, Animal , Immunologic Memory/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Interleukin-10/immunology , Interleukin-10/metabolism , Lung/immunology , Lung/virology , Lung/pathology , Macaca mulatta , Memory T Cells/immunology , Memory T Cells/metabolism , SARS-CoV-2/immunology , T-Lymphocytes/immunologyABSTRACT
The specific chemokine receptors utilized by Th1 cells to migrate into the lung during Mycobacterium tuberculosis infection are unknown. We previously showed in mice that CXCR3+ Th1 cells enter the lung parenchyma and suppress M. tuberculosis growth, while CX3CR1+ KLRG1+ Th1 cells accumulate in the lung vasculature and are nonprotective. Here we quantify the contributions of these chemokine receptors to the migration and entry rate of Th1 cells into M. tuberculosis-infected lungs using competitive adoptive transfer migration assays and mathematical modeling. We found that in 8.6 h half of M. tuberculosis-specific CD4 T cells migrate from the blood to the lung parenchyma. CXCR3 deficiency decreases the average rate of Th1 cell entry into the lung parenchyma by half, while CX3CR1 deficiency doubles it. KLRG1 blockade has no effect on Th1 cell lung migration. CCR2, CXCR5, and, to a lesser degree, CCR5 and CXCR6 also promote the entry of Th1 cells into the lungs of infected mice. Moreover, blockade of G-protein-coupled receptors with pertussis toxin treatment prior to transfer only partially inhibits T cell migration into the lungs. Thus, the fraction of Th1 cell input into the lungs during M. tuberculosis infection that is regulated by chemokine receptors likely reflects the cumulative effects of multiple chemokine receptors that mostly promote but that can also inhibit entry into the parenchyma.
Subject(s)
CD4-Positive T-Lymphocytes/cytology , Lung/immunology , Mycobacterium tuberculosis/physiology , Tuberculosis/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Movement , Female , Humans , Lung/microbiology , Male , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Receptors, Chemokine , Th1 Cells/immunology , Tuberculosis/genetics , Tuberculosis/microbiology , Tuberculosis/physiopathologyABSTRACT
Mucosal-associated invariant T cells (MAITs) are positioned in airways and may be important in the pulmonary cellular immune response against Mycobacterium tuberculosis infection, particularly prior to priming of peptide-specific T cells. Accordingly, there is interest in the possibility that boosting MAITs through tuberculosis (TB) vaccination may enhance protection, but MAIT responses in the lungs during tuberculosis are poorly understood. In this study, we compared pulmonary MAIT and peptide-specific CD4 T cell responses in M. tuberculosis-infected rhesus macaques using 5-OP-RU-loaded MR-1 tetramers and intracellular cytokine staining of CD4 T cells following restimulation with an M. tuberculosis-derived epitope megapool (MTB300), respectively. Two of four animals showed a detectable increase in the number of MAIT cells in airways at later time points following infection, but by â¼3 weeks postexposure, MTB300-specific CD4 T cells arrived in the airways and greatly outnumbered MAITs thereafter. In granulomas, MTB300-specific CD4 T cells were â¼20-fold more abundant than MAITs. CD69 expression on MAITs correlated with tissue residency rather than bacterial loads, and the few MAITs found in granulomas poorly expressed granzyme B and Ki67. Thus, MAIT accumulation in the airways is variable and late, and MAITs display little evidence of activation in granulomas during tuberculosis in rhesus macaques.
Subject(s)
Host Microbial Interactions/immunology , Mucosal-Associated Invariant T Cells/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis/immunology , Animals , Antigens, CD/genetics , Antigens, Differentiation, T-Lymphocyte/genetics , Bronchoalveolar Lavage Fluid , Granuloma/immunology , Granuloma/microbiology , Granzymes/genetics , Immunity, Cellular , Ki-67 Antigen/genetics , Lectins, C-Type/genetics , Lung/immunology , Lung/microbiology , Lung/pathology , Lymphocyte Activation , Macaca mulatta , Mycobacterium tuberculosis , Th1 Cells/immunologyABSTRACT
IFN-γ-producing CD4 T cells are required for protection against Mycobacterium tuberculosis (Mtb) infection, but the extent to which IFN-γ contributes to overall CD4 T cell-mediated protection remains unclear. Furthermore, it is not known if increasing IFN-γ production by CD4 T cells is desirable in Mtb infection. Here we show that IFN-γ accounts for only ~30% of CD4 T cell-dependent cumulative bacterial control in the lungs over the first six weeks of infection, but >80% of control in the spleen. Moreover, increasing the IFN-γ-producing capacity of CD4 T cells by ~2 fold exacerbates lung infection and leads to the early death of the host, despite enhancing control in the spleen. In addition, we show that the inhibitory receptor PD-1 facilitates host resistance to Mtb by preventing the detrimental over-production of IFN-γ by CD4 T cells. Specifically, PD-1 suppressed the parenchymal accumulation of and pathogenic IFN-γ production by the CXCR3+KLRG1-CX3CR1- subset of lung-homing CD4 T cells that otherwise mediates control of Mtb infection. Therefore, the primary role for T cell-derived IFN-γ in Mtb infection is at extra-pulmonary sites, and the host-protective subset of CD4 T cells requires negative regulation of IFN-γ production by PD-1 to prevent lethal immune-mediated pathology.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interferon-gamma/biosynthesis , Programmed Cell Death 1 Receptor/metabolism , Tuberculosis, Pulmonary/immunology , Adoptive Transfer , Animals , Blotting, Western , Cytokines/analysis , Cytokines/biosynthesis , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Interferon-gamma/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/immunology , Programmed Cell Death 1 Receptor/immunology , Tuberculosis, Pulmonary/metabolismABSTRACT
Cryptococcus neoformans is the most common cause of fungal meningoencephalitis in AIDS patients. Depletion of CD4 cells, such as occurs during advanced AIDS, is known to be a critical risk factor for developing cryptococcosis. However, the role of HIV-induced innate inflammation in susceptibility to cryptococcosis has not been evaluated. Thus, we sought to determine the role of Type I IFN induction in host defense against cryptococci by treatment of C. neoformans (H99) infected mice with poly-ICLC (pICLC), a dsRNA virus mimic. Unexpectedly, pICLC treatment greatly extended survival of infected mice and reduced fungal burdens in the brain. Protection from cryptococcosis by pICLC-induced Type I IFN was mediated by MDA5 rather than TLR3. PICLC treatment induced a large, rapid and sustained influx of neutrophils and Ly6Chigh monocytes into the lung while suppressing the development of eosinophilia. The pICLC-mediated protection against H99 was CD4 T cell dependent and analysis of CD4 T cell polyfunctionality showed a reduction in IL-5 producing CD4 T cells, marginal increases in Th1 cells and dramatic increases in RORγt+ Th17 cells in pICLC treated mice. Moreover, the protective effect of pICLC against H99 was diminished in IFNγ KO mice and by IL-17A neutralization with blocking mAbs. Furthermore, pICLC treatment also significantly extended survival of C. gattii infected mice with reduced fungal loads in the lungs. These data demonstrate that induction of type I IFN dramatically improves host resistance against the etiologic agents of cryptococcosis by beneficial alterations in both innate and adaptive immune responses.
Subject(s)
Carboxymethylcellulose Sodium/analogs & derivatives , Interferon Inducers/pharmacology , Interferon Type I/biosynthesis , Meningitis, Cryptococcal/immunology , Poly I-C/pharmacology , Polylysine/analogs & derivatives , Animals , CD4-Positive T-Lymphocytes/immunology , Carboxymethylcellulose Sodium/pharmacology , Cryptococcus neoformans , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Polylysine/pharmacologyABSTRACT
Th1 cells are critical for containment of Mycobacterium tuberculosis infection, but little else is known about the properties of protective CD4 T cell responses. In this study, we show that the pulmonary Th1 response against M. tuberculosis is composed of two populations that are either CXCR3(hi) and localize to lung parenchyma or are CX3CR1(hi)KLRG1(hi) and are retained within lung blood vasculature. M. tuberculosis-specific parenchymal CD4 T cells migrate rapidly back into the lung parenchyma upon adoptive transfer, whereas the intravascular effectors produce the highest levels of IFN-γ in vivo. Importantly, parenchymal T cells displayed greater control of infection compared with the intravascular counterparts upon transfer into susceptible T cell-deficient hosts. Thus, we identified a subset of naturally generated M. tuberculosis-specific CD4 T cells with enhanced protective capacity and showed that control of M. tuberculosis correlates with the ability of CD4 T cells to efficiently enter the lung parenchyma rather than produce high levels of IFN-γ.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , Lung/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Adoptive Transfer , Animals , Blood Vessels/immunology , Blood Vessels/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/transplantation , CX3C Chemokine Receptor 1 , Cell Movement/immunology , Flow Cytometry , Host-Pathogen Interactions/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lectins, C-Type , Leukocyte Common Antigens/immunology , Leukocyte Common Antigens/metabolism , Lung/blood supply , Lung/microbiology , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Mycobacterium tuberculosis/physiology , Receptors, CXCR3/immunology , Receptors, CXCR3/metabolism , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Tuberculosis/microbiologyABSTRACT
Alternative delivery routes of the current Mycobacterium tuberculosis (Mtb) vaccine, intradermally (ID) delivered BCG, may provide better protection against tuberculosis, and be more easily administered. Here, we use rhesus macaques to compare the airway immunogenicity of BCG delivered via either ID or intragastric gavage vaccination. Ag-specific CD4 T cell responses in the blood were similar after BCG vaccination via gavage or ID injection. However, gavage BCG vaccination induced significantly lower T cell responses in the airways compared to intradermal BCG vaccination. Examining T cell responses in lymph node biopsies showed that ID vaccination induced T cell priming in skin-draining lymph nodes, while gavage vaccination induced priming in the gut-draining nodes, as expected. While both delivery routes induced highly functional Ag-specific CD4 T cells with a Th1* phenotype (CXCR3+CCR6+), gavage vaccination induced the co-expression of the gut-homing integrin α4ß7 on Ag-specific Th1* cells, which was associated with reduced migration into the airways. Thus, in rhesus macaques, the airway immunogenicity of gavage BCG vaccination may be limited by the imprinting of gut-homing receptors on Ag-specific T cells primed in intestinal lymph nodes. IMPORTANCE Mycobacterium tuberculosis (Mtb) is a leading cause of global infectious disease mortality. The vaccine for Mtb, Bacillus Calmette-Guérin (BCG), was originally developed as an oral vaccine, but is now given intradermally. Recently, clinical studies have reevaluated oral BCG vaccination in humans and found that it induces significant T cell responses in the airways. Here, we use rhesus macaques to compare the airway immunogenicity of BCG delivered intradermally or via intragastric gavage. We find that gavage BCG vaccination induces Mtb-specific T cell responses in the airways, but to a lesser extent than intradermal vaccination. Furthermore, gavage BCG vaccination induces the gut-homing receptor a4ß7 on Mtb-specific CD4 T cells, which was associated with reduced migration into the airways. These data raise the possibility that strategies to limit the induction of gut-homing receptors on responding T cells may enhance the airway immunogenicity of oral vaccines.
Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , BCG Vaccine , Macaca mulatta , Lung/microbiology , Tuberculosis/prevention & control , Th1 Cells , Mycobacterium bovis/genetics , CD4-Positive T-Lymphocytes , VaccinationABSTRACT
Control of Mycobacterium tuberculosis (Mtb) infection requires generation of T cells that migrate to granulomas, complex immune structures surrounding sites of bacterial replication. Here we compared the gene expression profiles of T cells in pulmonary granulomas, bronchoalveolar lavage, and blood of Mtb-infected rhesus macaques to identify granuloma-enriched T cell genes. TNFRSF8/CD30 was among the top genes upregulated in both CD4 and CD8 T cells from granulomas. In mice, CD30 expression on CD4 T cells is required for survival of Mtb infection, and there is no major role for CD30 in protection by other cell types. Transcriptomic comparison of WT and CD30-/- CD4 T cells from the lungs of Mtb-infected mixed bone marrow chimeric mice showed that CD30 directly promotes CD4 T cell differentiation and the expression of multiple effector molecules. These results demonstrate that the CD30 co-stimulatory axis is highly upregulated on granuloma T cells and is critical for protective T cell responses against Mtb infection.
Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , CD4-Positive T-Lymphocytes , Cell Differentiation , Granuloma/metabolism , Macaca mulatta , Tuberculosis/microbiology , Ki-1 Antigen/immunologyABSTRACT
Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation-mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis.
Subject(s)
Ferroptosis , Glutathione Peroxidase/metabolism , Tuberculosis , Animals , Glutathione/metabolism , Lipid Peroxidation , Mice , Mice, Transgenic , Necrosis , Phospholipid Hydroperoxide Glutathione Peroxidase , Tuberculosis/immunology , Tuberculosis/metabolismABSTRACT
The pro- and anti-inflammatory pathways that determine the balance of inflammation and viral control during SARS-CoV-2 infection are not well understood. Here we examine the roles of IFNγ and IL-10 in regulating inflammation, immune cell responses and viral replication during SARS-CoV-2 infection of rhesus macaques. IFNγ blockade tended to decrease lung inflammation based on 18 FDG-PET/CT imaging but had no major impact on innate lymphocytes, neutralizing antibodies, or antigen-specific T cells. In contrast, IL-10 blockade transiently increased lung inflammation and enhanced accumulation of virus-specific T cells in the lower airways. However, IL-10 blockade also inhibited the differentiation of virus-specific T cells into airway CD69 + CD103 + T RM cells. While virus-specific T cells were undetectable in the nasal mucosa of all groups, IL-10 blockade similarly reduced the frequency of total T RM cells in the nasal mucosa. Neither cytokine blockade substantially affected viral load and infection ultimately resolved. Thus, in the macaque model of mild COVID-19, the pro- and anti-inflammatory effects of IFNγ and IL-10 have no major role in control of viral replication. However, IL-10 has a key role in suppressing the accumulation of SARS-CoV-2-specific T cells in the lower airways, while also promoting T RM at respiratory mucosal surfaces.
ABSTRACT
HIV/Mycobacterium tuberculosis (Mtb) co-infected individuals have an increased risk of tuberculosis prior to loss of peripheral CD4 T cells, raising the possibility that HIV co-infection leads to CD4 T cell depletion in lung tissue before it is evident in blood. Here, we use rhesus macaques to study the early effects of simian immunodeficiency virus (SIV) co-infection on pulmonary granulomas. Two weeks after SIV inoculation of Mtb-infected macaques, Mtb-specific CD4 T cells are dramatically depleted from granulomas, before CD4 T cell loss in blood, airways, and lymph nodes, or increases in bacterial loads or radiographic evidence of disease. Spatially, CD4 T cells are preferentially depleted from the granuloma core and cuff relative to B cell-rich regions. Moreover, live imaging of granuloma explants show that intralesional CD4 T cell motility is reduced after SIV co-infection. Thus, granuloma CD4 T cells may be decimated before many co-infected individuals experience the first symptoms of acute HIV infection.
Subject(s)
Coinfection , HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Tuberculosis , Animals , CD4-Positive T-Lymphocytes , Coinfection/pathology , Granuloma/pathology , HIV Infections/complications , HIV Infections/pathology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/complications , Simian Acquired Immunodeficiency Syndrome/pathology , Tuberculosis/pathologyABSTRACT
SARS-CoV-2 primarily replicates in mucosal sites, and more information is needed about immune responses in infected tissues. Here, we used rhesus macaques to model protective primary immune responses in tissues during mild COVID-19. Viral RNA levels were highest on days 1-2 post-infection and fell precipitously thereafter. 18F-fluorodeoxyglucose (FDG)-avid lung abnormalities and interferon (IFN)-activated monocytes and macrophages in the bronchoalveolar lavage (BAL) were found on days 3-4 post-infection. Virus-specific effector CD8+ and CD4+ T cells became detectable in the BAL and lung tissue on days 7-10, after viral RNA, radiologic evidence of lung inflammation, and IFN-activated myeloid cells had substantially declined. Notably, SARS-CoV-2-specific T cells were not detectable in the nasal turbinates, salivary glands, and tonsils on day 10 post-infection. Thus, SARS-CoV-2 replication wanes in the lungs of rhesus macaques prior to T cell responses, and in the nasal and oral mucosa despite the apparent lack of antigen-specific T cells, suggesting that innate immunity efficiently restricts viral replication during mild COVID-19.
ABSTRACT
Influx of eosinophils into the lungs is typically associated with type II responses during allergy and fungal and parasitic infections. However, we previously reported that eosinophils accumulate in lung lesions during type I inflammatory responses to Mycobacterium tuberculosis (Mtb) in humans, macaques, and mice, in which they support host resistance. Here we show eosinophils migrate into the lungs of macaques and mice as early as one week after Mtb exposure. In mice this influx is CCR3 independent and instead requires cell-intrinsic expression of the oxysterol receptor GPR183, which is highly expressed on human and macaque eosinophils. Murine eosinophils interact directly with bacilli-laden alveolar macrophages, which upregulate the oxysterol-synthesizing enzyme Ch25h, and eosinophil recruitment is impaired in Ch25h-deficient mice. Our findings show that eosinophils are among the earliest cells from circulation to sense and respond to Mtb infection of alveolar macrophages and reveal a role for GPR183 in the migration of eosinophils into lung tissue.
Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Eosinophils/metabolism , Humans , Lung/pathology , Macrophages, Alveolar , Mice , Mycobacterium tuberculosis/physiology , Receptors, G-Protein-Coupled/metabolism , Tuberculosis/pathologyABSTRACT
Mucosal-associated invariant T (MAIT) cells are potential targets of vaccination and host-directed therapeutics for tuberculosis, but the role of MAIT cells during Mycobacterium tuberculosis (Mtb) infection in vivo is not well understood. Here we find that following Mtb infection MAIT cells mount minimal responses, and MAIT cell-deficient MR1-/- mice display normal survival. Preinfection expansion of MAIT cells through 5-OP-RU vaccination fails to protect against subsequent Mtb challenge. In fact, 5-OP-RU vaccination delays Mtb-specific CD4 T cell priming in lung-draining lymph nodes, and conversely MR1 deficiency or blockade accelerates T cell priming. The MAIT cell-mediated delay in T cell priming is partly dependent on TGF-ß. Surprisingly, 5-OP-RU treatment during chronic infection drives MAIT cell expansion and an IL-17A-dependent reduction in bacterial loads. Thus, during early infection MAIT cells directly contribute to the notoriously slow priming of CD4 T cells, but later during infection MAIT cell stimulation may be an effective host-directed therapy for tuberculosis.
Subject(s)
Adoptive Transfer , Mucosal-Associated Invariant T Cells/immunology , Mycobacterium tuberculosis , Tuberculosis/immunology , Tuberculosis/therapy , Adoptive Transfer/methods , Animals , Biomarkers , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Female , Host-Pathogen Interactions/immunology , Immunophenotyping , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Male , Mice , Mycobacterium tuberculosis/immunology , T-Cell Antigen Receptor Specificity , Transforming Growth Factor beta/antagonists & inhibitors , Tuberculosis/microbiology , Tuberculosis/prevention & controlABSTRACT
Staphylococcus aureus is a leading cause of significant morbidity and mortality and an enormous economic burden to public health worldwide. Infections caused by methicillin-resistant S. aureus (MRSA) pose a major threat as MRSA strains are becoming increasingly prevalent and multi-drug resistant. To this date, vaccines targeting surface-bound antigens demonstrated promising results in preclinical testing but have failed in clinical trials. S. aureus pathogenesis is in large part driven by immune destructive and immune modulating toxins and thus represent promising vaccine targets. Hence, the objective of this study was to evaluate the safety and immunogenicity of a staphylococcal 4-component vaccine targeting secreted bi-component pore-forming toxins (BCPFTs) and superantigens (SAgs) in non-human primates (NHPs). The 4-component vaccine proved to be safe, even when repeated vaccinations were given at a dose that is 5 to 10- fold higher than the proposed human dose. Vaccinated rhesus macaques did not exhibit clinical signs, weight loss, or changes in hematology or serum chemistry parameters related to the administration of the vaccine. No acute, vaccine-related elevation of serum cytokine levels was observed after vaccine administration, confirming the toxoid components lacked superantigenicity. Immunized animals demonstrated high level of toxin-specific total and neutralizing antibodies toward target antigens of the 4-component vaccine as well as cross-neutralizing activity toward staphylococcal BCPFTs and SAgs that are not direct targets of the vaccine. Cross-neutralization was also observed toward the heterologous streptococcal pyogenic exotoxin B. Ex vivo stimulation of PBMCs with individual vaccine components demonstrated an overall increase in several T cell cytokines measured in supernatants. Immunophenotyping of CD4 T cells ex vivo showed an increase in Ag-specific polyfunctional CD4 T cells in response to antigen stimulation. Taken together, we demonstrate that the 4-component vaccine is well-tolerated and immunogenic in NHPs generating both humoral and cellular immune responses. Targeting secreted toxin antigens could be the next-generation vaccine approach for staphylococcal vaccines if also proven to provide efficacy in humans.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , Methicillin-Resistant Staphylococcus aureus/physiology , Staphylococcal Infections/immunology , Staphylococcal Toxoid/immunology , Staphylococcal Vaccines/immunology , Animals , Antibodies, Bacterial/blood , Antibody Formation , Broadly Neutralizing Antibodies/blood , Immunity, Heterologous , Immunogenicity, Vaccine , Lymphocyte Activation , Macaca mulatta , Superantigens/immunology , VaccinationABSTRACT
Targeting MAIT cells holds promise for the treatment of different diseases and infections. We previously showed that treatment of Mycobacterium tuberculosis infected mice with 5-OP-RU, a major antigen for MAIT cells, expands MAIT cells and enhances bacterial control. Here we treated M. tuberculosis infected rhesus macaques with 5-OP-RU intratracheally but found no clinical or microbiological benefit. In fact, after 5-OP-RU treatment MAIT cells did not expand, but rather upregulated PD-1 and lost the ability to produce multiple cytokines, a phenotype resembling T cell exhaustion. Furthermore, we show that vaccination of uninfected macaques with 5-OP-RU+CpG instillation into the lungs also drives MAIT cell dysfunction, and PD-1 blockade during vaccination partly prevents the loss of MAIT cell function without facilitating their expansion. Thus, in rhesus macaques MAIT cells are prone to the loss of effector functions rather than expansion after TCR stimulation in vivo, representing a significant barrier to therapeutically targeting these cells.
Subject(s)
Lung/drug effects , Lung/immunology , Lung/metabolism , Mucosal-Associated Invariant T Cells/drug effects , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Ribitol/analogs & derivatives , Uracil/analogs & derivatives , Animals , Biomarkers , Cytokines/biosynthesis , Disease Management , Disease Susceptibility , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunophenotyping , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Macaca mulatta , Monkey Diseases/diagnosis , Monkey Diseases/drug therapy , Monkey Diseases/etiology , Monkey Diseases/metabolism , Mycobacterium tuberculosis/immunology , Positron-Emission Tomography , Ribitol/administration & dosage , Tomography, X-Ray Computed , Tuberculosis/veterinary , Uracil/administration & dosageABSTRACT
Boosting immune cell function by targeting the coinhibitory receptor PD-1 may have applications in the treatment of chronic infections. Here, we examine the role of PD-1 during Mycobacterium tuberculosis (Mtb) infection of rhesus macaques. Animals treated with anti-PD-1 monoclonal antibody developed worse disease and higher granuloma bacterial loads compared with isotype control-treated monkeys. PD-1 blockade increased the number and functionality of granuloma Mtb-specific CD8 T cells. In contrast, Mtb-specific CD4 T cells in anti-PD-1-treated macaques were not increased in number or function in granulomas, expressed increased levels of CTLA-4, and exhibited reduced intralesional trafficking in live imaging studies. In granulomas of anti-PD-1-treated animals, multiple proinflammatory cytokines were elevated, and more cytokines correlated with bacterial loads, leading to the identification of a role for caspase 1 in the exacerbation of tuberculosis after PD-1 blockade. Last, increased Mtb bacterial loads after PD-1 blockade were found to associate with the composition of the intestinal microbiota before infection in individual macaques. Therefore, PD-1-mediated coinhibition is required for control of Mtb infection in macaques, perhaps because of its role in dampening detrimental inflammation and allowing for normal CD4 T cell responses.
Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Immune Checkpoint Inhibitors/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tuberculosis/drug therapy , Animals , Bacterial Load/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/metabolism , Disease Models, Animal , Humans , Immune Checkpoint Inhibitors/administration & dosage , Macaca mulatta , Male , Mice , Mice, Knockout , Mycobacterium tuberculosis/immunology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Severity of Illness Index , Symptom Flare Up , Tuberculosis/diagnosis , Tuberculosis/immunology , Tuberculosis/microbiologyABSTRACT
Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the activities of multiple leukocyte subsets, yet the roles of the different innate effector cells during tuberculosis are incompletely understood. Here we uncover an unexpected association between eosinophils and Mtb infection. In humans, eosinophils are decreased in the blood but enriched in resected human tuberculosis lung lesions and autopsy granulomas. An influx of eosinophils is also evident in infected zebrafish, mice, and nonhuman primate granulomas, where they are functionally activated and degranulate. Importantly, using complementary genetic models of eosinophil deficiency, we demonstrate that in mice, eosinophils are required for optimal pulmonary bacterial control and host survival after Mtb infection. Collectively, our findings uncover an unexpected recruitment of eosinophils to the infected lung tissue and a protective role for these cells in the control of Mtb infection in mice.