ABSTRACT
The transformation of α-acids [in hops (Humulus lupulus L.)] to iso-α-acids (in beer) during the brewing process is well known, but the occurrence and structure of the oxidized α-acids during hop storage are not well documented. Because an understanding of these oxidized compounds is essential to optimize the effects of oxidized hops on the quality of beer, we investigated the autoxidation products of humulone (a representative congener of α-acids) using a simplified autoxidation model. Among the oxidation products, tricyclooxyisohumulones A (1) and B (2), tricycloperoxyisohumulone A (3), deisopropyltricycloisohumulone (4), and the hemiacetal 5 of tricycloperoxyhumulone A (5') were isolated, and their structures were elucidated for the first time. The occurrence of compounds 1-4 in stored hops was verified using LC/MS/MS analysis. We also monitored the levels of compounds 1-4 during hop storage using LC/MS/MS analysis.
Subject(s)
Cyclohexenes/chemistry , Humulus/chemistry , Terpenes/chemistry , Beer/analysis , Biotransformation , Germany , Humulus/metabolism , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Oxidation-ReductionABSTRACT
Blackcurrants (Ribes nigrum L.) have various benefits for human health. In particular, a polysaccharide derived from blackcurrant was found to be an immunostimulating food ingredient in a mouse model. We named a polysaccharide derived from blackcurrant cassis polysaccharide (CAPS). In a previous clinical study, we reported that CAPS affects skin dehydration, demonstrating its effectiveness against skin inflammation was related to atopic dermatitis; skin inflammation caused skin dehydration. However, there are no studies regarding CAPS effectiveness against skin dehydration. The current study aimed to investigate CAPS effectiveness against skin dehydration. We further demonstrate the effect of oral administration of CAPS on skin dehydration caused by ultraviolet (UV) irradiation-induced inflammation in mice. We found that CAPS administration suppresses skin dehydration caused by UV irradiation. We also found that CAPS decreases interleukin-6 and matrix metalloproteinase transcription levels in the mouse skin. These results show that CAPS improves skin hydration in UV-irradiated mice.
Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Dermatitis, Atopic/therapy , Dietary Carbohydrates/therapeutic use , Fruit/chemistry , Plant Extracts/therapeutic use , Ribes/chemistry , Skin/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Dermatitis, Atopic/etiology , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/analysis , Dietary Carbohydrates/isolation & purification , Dietary Fiber/administration & dosage , Dietary Fiber/analysis , Dietary Fiber/therapeutic use , Dietary Supplements/analysis , Female , Gene Expression Regulation/radiation effects , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Matrix Metalloproteinase 13/chemistry , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Mice, Hairless , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Prebiotics/administration & dosage , Prebiotics/analysis , Radiation Injuries, Experimental/immunology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/therapy , Skin/immunology , Skin/radiation effects , Specific Pathogen-Free Organisms , Ultraviolet Rays/adverse effects , Water/metabolismABSTRACT
Atopic dermatitis (AD) is a chronic inflammatory skin disease that causes dry skin and functional disruption of the skin barrier. AD is often accompanied by allergic inflammation. AD patient suffer from heavy itching, and their quality of life is severely affected. Some pharmaceuticals for AD have some side effects such as skin atrophy. So it is necessary to develop mild solutions such as food ingredients without side effects. There are various causes of AD. It is especially induced by immunological imbalances such as IFN-γ reduction. IFN-γ has an important role in regulating IgE, which can cause an allergy reaction. NC/Nga mice develop AD and IgE hyperproduction. In a previous study, we revealed that administration of polysaccharide from black currant (R. nigrum) has an effect on immunomodulation. It induces IFN-γ production from myeloid dendritic cells. We named this polysaccharide cassis polysaccharide (CAPS). In this report, we studied the effect of administering CAPS on atopic dermatitis in NC/Nga mice. Thirty NC/Nga mice that developed symptoms of atopic dermatitis were used. We divided them into three groups (control, CAPS administration 12 mg/kg/day, CAPS administration 60 mg/kg/day). For 4 weeks, we evaluated clinical score, serum IgE levels, gene expression of spleen, and skin pathology. We revealed that CAPS administration improves atopic dermatitis symptoms. We also found that CAPS administration suppresses IgE hyperproduction and induces IFN-γ gene transcription in the spleen. Finally, we confirmed that CAPS administration suppresses mast cell migration to epidermal skin. These results indicated that CAPS has an effect on AD.
ABSTRACT
Black currant (Ribes nigrum) has various beneficial properties for human health. In particular, polysaccharide from black currant was found to be an immunostimulating food ingredient and was reported to have antitumor activity in a mouse model. We named it cassis polysaccharide (CAPS). In a previous study, CAPS administration caused tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) production in vitro and in vivo, but the immunological mechanism of CAPS was not demonstrated. In this study, we revealed the CAPS immunostimulating mechanism in vitro. First, we found that CAPS activated dendritic cells (DCs). Second, we investigated whether it depends on Toll-like receptor 4 (TLR4) and myeloid differentiation primary response (Myd). We concluded that CAPS stimulates DCs through Myd88 depending TLR4 signaling and activates Th1-type cytokine release.
ABSTRACT
BACKGROUND: Extracellular urease proteins located on the surface of Helicobacter pylori are gastric mucin-targeted adhesins, which play an important role in infection and colonization to the host. In this study we have determined the inhibitory activity of a variety of melanoidins, protein-derived advanced Maillard reaction products, ubiquitously found in heat-treated foods, on urease-gastric mucin adhesion. In addition, we have determined the anticolonization effect of melanoidin I, prepared by the Maillard reaction between casein and lactose, in an animal model and in human subjects infected with this bacterium. METHODS: The inhibitory activity of each compound was determined by a competitive binding assay of labeled gastric mucin to plate-immobilized urease. Melanoidin I was used in an in vivo trial using euthymic hairless mice as an infection model. Melanoidin I was consumed for 8 weeks by subjects infected with H. pylori. The [(13)C] urease breath test and H. pylori-specific antigen in the stool (HpSA) test were performed on subjects at week 0 and week 8. RESULTS: A variety of food protein-derived melanoidins strongly inhibited urease-gastric mucin adhesion in the concentration range of 10 micro g/ml to 100 micro g/ml. In particular, melanoidin I significantly (p <.05) suppressed colonization of H. pylori in mice when given for 10 weeks via the diets. Eight weeks daily intake of 3 g melanoidin I significantly (p <.05) decreased the optical density of HpSA in subjects. CONCLUSION: Foods containing protein-derived melanoidins may be an alternative to antibiotic-based therapy to prevent H. pylori that combines safety, ease of administration and efficacy.