Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nano Lett ; 23(15): 7107-7113, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37506350

ABSTRACT

Systems with flat bands are ideal for studying strongly correlated electronic states and related phenomena. Among them, kagome-structured metals such as CoSn have been recognized as promising candidates due to the proximity between the flat bands and the Fermi level. A key next step will be to realize epitaxial kagome thin films with flat bands to enable tuning of the flat bands across the Fermi level via electrostatic gating or strain. Here, we report the band structures of epitaxial CoSn thin films grown directly on the insulating substrates. Flat bands are observed by using synchrotron-based angle-resolved photoemission spectroscopy (ARPES). The band structure is consistent with density functional theory (DFT) calculations, and the transport properties are quantitatively explained by the band structure and semiclassical transport theory. Our work paves the way to realize flat band-induced phenomena through fine-tuning of flat bands in kagome materials.

2.
Phys Rev Lett ; 131(15): 156702, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37897779

ABSTRACT

The orbital Hall effect has been theoretically predicted but its direct observation is a challenge. Here, we report the magneto-optical detection of current-induced orbital accumulation at the surface of a light 3d transition metal, Cr. The orbital polarization is in-plane, transverse to the current direction, and scales linearly with current density, consistent with the orbital Hall effect. Comparing the thickness-dependent magneto-optical measurements with ab initio calculations, we estimate an orbital diffusion length in Cr of 6.6±0.6 nm.

3.
Phys Rev Lett ; 130(4): 046202, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36763432

ABSTRACT

Using time- and angle-resolved photoemission, we present momentum- and energy-resolved measurements of exciton coupling in monolayer WS_{2}. We observe strong intravalley coupling between the B_{1s} exciton and A_{n>1} states. Our measurements indicate that the dominant valley depolarization mechanism conserves the exciton binding energy and momentum. While this conservation is consistent with Coulomb exchange-driven valley depolarization, we do not observe a momentum or energy dependence to the depolarization rate as would be expected for the exchange-based mechanism.

4.
Nano Lett ; 21(16): 6975-6982, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34380320

ABSTRACT

Spin-orbit torque phenomena enable efficient manipulation of the magnetization in ferromagnet/heavy metal bilayer systems for prospective magnetic memory and logic applications. Kagome magnets are of particular interest for spin-orbit torque due to the interplay of magnetic order and the nontrivial band topology (e.g., flat bands and Dirac and Weyl points). Here we demonstrate spin-orbit torque and quantify its efficiency in a bilayer system of topological kagome ferromagnet Fe3Sn2 and platinum. We use two different techniques, one based on the quasistatic magneto-optic Kerr effect (MOKE) and another based on time-resolved MOKE, to quantify spin-orbit torque. Both techniques give a consistent value of the effective spin Hall angle of the Fe3Sn2/Pt system. Our work may lead to further advances in spintronics based on topological kagome magnets.

5.
Nano Lett ; 21(12): 5083-5090, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34097421

ABSTRACT

The intrinsic magnetic topological insulators MnBi2Te4 and MnBi2Se4 support novel topological states related to symmetry breaking by magnetic order. Unlike MnBi2Te4, the study of MnBi2Se4 has been inhibited by the lack of bulk crystals, as the van der Waals (vdW) crystal is not the thermodynamic equilibrium phase. Here, we report the layer-by-layer synthesis of vdW MnBi2Se4 crystals using nonequilibrium molecular beam epitaxy. Atomic-resolution scanning transmission electron microscopy and scanning tunneling microscopy identify a well-ordered vdW crystal with septuple-layer base units. The magnetic properties agree with the predicted layered antiferromagnetic ordering but disagree with its predicted out-of-plane orientation. Instead, our samples exhibit an easy-plane anisotropy, which is explained by including dipole-dipole interactions. Angle-resolved photoemission spectroscopy reveals the gapless Dirac-like surface state, which demonstrates that MnBi2Se4 is a topological insulator above the magnetic-ordering temperature. These studies show that MnBi2Se4 is a promising candidate for exploring rich topological phases of layered antiferromagnetic topological insulators.

6.
Nano Lett ; 18(5): 3125-3131, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29608316

ABSTRACT

Monolayer van der Waals (vdW) magnets provide an exciting opportunity for exploring two-dimensional (2D) magnetism for scientific and technological advances, but the intrinsic ferromagnetism has only been observed at low temperatures. Here, we report the observation of room temperature ferromagnetism in manganese selenide (MnSe x) films grown by molecular beam epitaxy (MBE). Magnetic and structural characterization provides strong evidence that, in the monolayer limit, the ferromagnetism originates from a vdW manganese diselenide (MnSe2) monolayer, while for thicker films it could originate from a combination of vdW MnSe2 and/or interfacial magnetism of α-MnSe(111). Magnetization measurements of monolayer MnSe x films on GaSe and SnSe2 epilayers show ferromagnetic ordering with a large saturation magnetization of ∼4 Bohr magnetons per Mn, which is consistent with the density functional theory calculations predicting ferromagnetism in monolayer 1T-MnSe2. Growing MnSe x films on GaSe up to a high thickness (∼40 nm) produces α-MnSe(111) and an enhanced magnetic moment (∼2×) compared to the monolayer MnSe x samples. Detailed structural characterization by scanning transmission electron microscopy (STEM), scanning tunneling microscopy (STM), and reflection high energy electron diffraction (RHEED) reveals an abrupt and clean interface between GaSe(0001) and α-MnSe(111). In particular, the structure measured by STEM is consistent with the presence of a MnSe2 monolayer at the interface. These results hold promise for potential applications in energy efficient information storage and processing.

7.
Phys Rev Lett ; 121(12): 127703, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30296144

ABSTRACT

We report the discovery of a strong and tunable spin-lifetime anisotropy with excellent out-of-plane spin lifetimes up to 7.8 ns at 100 K in dual-gated bilayer graphene. Remarkably, this realizes the manipulation of spins in graphene by electrically controlled spin-orbit fields, which is unexpected due to graphene's weak intrinsic spin-orbit coupling (∼12 µeV). We utilize both the in-plane magnetic field Hanle precession and oblique Hanle precession measurements to directly compare the lifetimes of out-of-plane vs in-plane spins. We find that near the charge neutrality point, the application of a perpendicular electric field opens a band gap and generates an out-of-plane spin-orbit field that stabilizes out-of-plane spins against spin relaxation, leading to a large spin-lifetime anisotropy (defined as the ratio between out-of-plane and in-plane spin lifetime) up to ∼12 at 100 K. This intriguing behavior occurs because of the unique spin-valley coupled band structure of bilayer graphene. Our results demonstrate the potential for highly tunable spintronic devices based on dual-gated 2D materials.

8.
Phys Rev Lett ; 121(13): 136801, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30312090

ABSTRACT

We report the experimental observation of sublattice-resolved resonant scattering in bilayer graphene by performing simultaneous cryogenic atomic hydrogen doping and electron transport measurements in an ultrahigh vacuum. This allows us to monitor the hydrogen adsorption on the different sublattices of bilayer graphene without atomic-scale microscopy. Specifically, we detect two distinct resonant scattering peaks in the gate-dependent resistance, which evolve as a function of the atomic hydrogen dosage. Theoretical calculations show that one of the peaks originates from resonant scattering by hydrogen adatoms on the α sublattice (dimer site) while the other originates from hydrogen adatoms on the ß sublattice (nondimer site), thereby enabling a method for characterizing the relative sublattice occupancy via transport measurements. Utilizing this new capability, we investigate the adsorption and thermal desorption of hydrogen adatoms via controlled annealing and conclude that hydrogen adsorption on the ß sublattice is energetically favored. Through site-selective desorption from the α sublattice, we realize hydrogen doping with adatoms primarily on a single sublattice, which is highly desired for generating ferromagnetism.

9.
Nano Lett ; 17(6): 3877-3883, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28534400

ABSTRACT

Two-dimensional (2D) materials provide a unique platform for spintronics and valleytronics due to the ability to combine vastly different functionalities into one vertically stacked heterostructure, where the strengths of each of the constituent materials can compensate for the weaknesses of the others. Graphene has been demonstrated to be an exceptional material for spin transport at room temperature; however, it lacks a coupling of the spin and optical degrees of freedom. In contrast, spin/valley polarization can be efficiently generated in monolayer transition metal dichalcogenides (TMD) such as MoS2 via absorption of circularly polarized photons, but lateral spin or valley transport has not been realized at room temperature. In this Letter, we fabricate monolayer MoS2/few-layer graphene hybrid spin valves and demonstrate, for the first time, the opto-valleytronic spin injection across a TMD/graphene interface. We observe that the magnitude and direction of spin polarization is controlled by both helicity and photon energy. In addition, Hanle spin precession measurements confirm optical spin injection, spin transport, and electrical detection up to room temperature. Finally, analysis by a one-dimensional drift-diffusion model quantifies the optically injected spin current and the spin transport parameters. Our results demonstrate a 2D spintronic/valleytronic system that achieves optical spin injection and lateral spin transport at room temperature in a single device, which paves the way for multifunctional 2D spintronic devices for memory and logic applications.

10.
Nano Lett ; 17(12): 7578-7585, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29129075

ABSTRACT

The quality of the tunnel barrier at the ferromagnet/graphene interface plays a pivotal role in graphene spin valves by circumventing the impedance mismatch problem, decreasing interfacial spin dephasing mechanisms and decreasing spin absorption back into the ferromagnet. It is thus crucial to integrate superior tunnel barriers to enhance spin transport and spin accumulation in graphene. Here, we employ a novel tunnel barrier, strontium oxide (SrO), onto graphene to realize high quality spin transport as evidenced by room-temperature spin relaxation times exceeding a nanosecond in graphene on silicon dioxide substrates. Furthermore, the smooth and pinhole-free SrO tunnel barrier grown by molecular beam epitaxy (MBE), which can withstand large charge injection current densities, allows us to experimentally realize large spin accumulation in graphene at room temperature. This work puts graphene on the path to achieve efficient manipulation of nanomagnet magnetization using spin currents in graphene for logic and memory applications.

11.
Phys Rev Lett ; 118(18): 187201, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28524685

ABSTRACT

Two-dimensional materials provide a unique platform to explore the full potential of magnetic proximity-driven phenomena, which can be further used for applications in next-generation spintronic devices. Of particular interest is to understand and control spin currents in graphene by the magnetic exchange field of a nearby ferromagnetic material in graphene-ferromagnetic-insulator (FMI) heterostructures. Here, we present the experimental study showing the strong modulation of spin currents in graphene layers by controlling the direction of the exchange field due to FMI magnetization. Owing to clean interfaces, a strong magnetic exchange coupling leads to the experimental observation of complete spin modulation at low externally applied magnetic fields in short graphene channels. Additionally, we discover that the graphene spin current can be fully dephased by randomly fluctuating exchange fields. This is manifested as an unusually strong temperature dependence of the nonlocal spin signals in graphene, which is due to spin relaxation by thermally induced transverse fluctuations of the FMI magnetization.

12.
Nano Lett ; 13(7): 3106-10, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23746085

ABSTRACT

MoS2 and related metal dichalcogenides (MoSe2, WS2, WSe2) are layered two-dimensional materials that are promising for nanoelectronics and spintronics. For instance, large spin-orbit coupling and spin splitting in the valence band of single layer (SL) MoS2 could lead to enhanced spin lifetimes and large spin Hall angles. Understanding the nature of the contacts is a critical first step for realizing spin injection and spin transport in MoS2. Here, we have investigated Co contacts to SL MoS2 and find that the Schottky barrier height can be significantly decreased with the addition of a thin oxide barrier (MgO). Further, we show that the barrier height can be reduced to zero by tuning the carrier density with back gate. Therefore, the MgO could simultaneously provide a tunnel barrier to alleviate conductance mismatch while minimizing carrier depletion near the contacts. Such control over the barrier height should allow for careful engineering of the contacts to realize spin injection in these materials.

13.
Nat Commun ; 15(1): 761, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278796

ABSTRACT

Two-dimensional (2D) materials have drawn immense interests in scientific and technological communities, owing to their extraordinary properties and their tunability by gating, proximity, strain and external fields. For electronic applications, an ideal 2D material would have high mobility, air stability, sizable band gap, and be compatible with large scale synthesis. Here we demonstrate air stable field effect transistors using atomically thin few-layer PdSe2 sheets that are sandwiched between hexagonal BN (hBN), with large saturation current > 350 µA/µm, and high field effect mobilities of ~ 700 and 10,000 cm2/Vs at 300 K and 2 K, respectively. At low temperatures, magnetotransport studies reveal unique octets in quantum oscillations that persist at all densities, arising from 2-fold spin and 4-fold valley degeneracies, which can be broken by in-plane and out-of-plane magnetic fields toward quantum Hall spin and orbital ferromagnetism.

14.
Nano Lett ; 12(7): 3443-7, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22725628

ABSTRACT

Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin-orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune the mobility between 2700 and 12 000 cm(2)/(V s), we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that, while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.

15.
Phys Rev Lett ; 109(18): 186604, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23215308

ABSTRACT

Hydrogen adatoms are shown to generate magnetic moments inside single layer graphene. Spin transport measurements on graphene spin valves exhibit a dip in the nonlocal spin signal as a function of the applied magnetic field, which is due to scattering (relaxation) of pure spin currents by exchange coupling to the magnetic moments. Furthermore, Hanle spin precession measurements indicate the presence of an exchange field generated by the magnetic moments. The entire experiment including spin transport is performed in an ultrahigh vacuum chamber, and the characteristic signatures of magnetic moment formation appear only after hydrogen adatoms are introduced. Lattice vacancies also demonstrate similar behavior indicating that the magnetic moment formation originates from p(z)-orbital defects.

16.
Ultramicroscopy ; 232: 113395, 2022 01.
Article in English | MEDLINE | ID: mdl-34653891

ABSTRACT

The desire to design and build skyrmion-based devices has led to the need to characterize magnetic textures in thin films of functional materials. This can usually be achieved through the Lorentz transmission electron microscopy (LTEM) and the Lorentz scanning transmission electron microscopy (LSTEM) in thin film cross-section and single crystal specimens. However, direct imaging of the magnetic texture in plan-view samples of thin (< 50 nm) films has proved to be challenging due to the complex "background" contrast associated with the microstructure and defects, as well as contributions from bending of the specimens. Using a mechanically polished 35 nm plan-view FeGe thin film, we have explored three methods to extract magnetic contrast from the complex background contrast observed; (1) background subtraction in defocused LTEM images, (2) frequency filtered CoM-DPC reconstructed from LSTEM datasets and 3) registration of 4D-STEM datasets acquired at different tilt angles. Using these methods, we have successfully implemented real space imaging of both the helical phase and skyrmion phase. The ability to understand nanoscale magnetic behavior from plan-view thin films is a fundamental step towards development of highly integrated spin electronics.


Subject(s)
Electronics , Magnetics , Magnetic Phenomena , Microscopy, Electron, Transmission , Physical Phenomena
17.
Nat Nanotechnol ; 16(8): 856-868, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34282312

ABSTRACT

The large variety of 2D materials and their co-integration in van der Waals heterostructures enable innovative device engineering. In addition, their atomically thin nature promotes the design of artificial materials by proximity effects that originate from short-range interactions. Such a designer approach is particularly compelling for spintronics, which typically harnesses functionalities from thin layers of magnetic and non-magnetic materials and the interfaces between them. Here we provide an overview of recent progress in 2D spintronics and opto-spintronics using van der Waals heterostructures. After an introduction to the forefront of spin transport research, we highlight the unique spin-related phenomena arising from spin-orbit and magnetic proximity effects. We further describe the ability to create multifunctional hybrid heterostructures based on van der Waals materials, combining spin, valley and excitonic degrees of freedom. We end with an outlook on perspectives and challenges for the design and production of ultracompact all-2D spin devices and their potential applications in conventional and quantum technologies.

18.
Science ; 374(6574): 1484-1487, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34914516

ABSTRACT

Topological spin textures in chiral magnets such as manganese germanide (MnGe) are of fundamental interest and may enable magnetic storage and computing technologies. Our spin-polarized scanning tunneling microscopy images of MnGe thin films reveal a variety of textures that are correlated to the atomic-scale structure. Our images indicate helical stripe domains, in contrast to bulk, and associated helimagnetic domain walls. In combination with micromagnetic modeling, we can deduce the three-dimensional (3D) orientation of the helical wave vectors, and we find that three helical domains can meet in two distinct ways to produce either a "target-like" or a "π-like" topological spin texture. The target-like texture can be reversibly manipulated through either current/voltage pulsing or applied magnetic field, which represents a promising step toward future applications.

19.
ACS Appl Mater Interfaces ; 12(8): 9896-9901, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31986007

ABSTRACT

Scanning tunneling microscopy was used to study the surfaces of 20-100 nm thick FeGe films grown by molecular beam epitaxy. An average surface lattice constant of ∼6.8 Å, in agreement with the bulk value, was observed via scanning tunneling microscopy, low energy electron diffraction, and reflection high energy electron diffraction. Each of the four possible chemical terminations in the FeGe films were identified by comparing atomic-resolution images, showing distinct contrast with simulations from density functional theory calculations. A detailed study of the atomic layering order and registry across step edges allows us to uniquely determine the grain orientation and chirality in these noncentrosymmetric films.

20.
Nat Commun ; 9(1): 2869, 2018 07 20.
Article in English | MEDLINE | ID: mdl-30030444

ABSTRACT

Graphene has remarkable opportunities for spintronics due to its high mobility and long spin diffusion length, especially when encapsulated in hexagonal boron nitride (h-BN). Here, we demonstrate gate-tunable spin transport in such encapsulated graphene-based spin valves with one-dimensional (1D) ferromagnetic edge contacts. An electrostatic backgate tunes the Fermi level of graphene to probe different energy levels of the spin-polarized density of states (DOS) of the 1D ferromagnetic contact, which interact through a magnetic proximity effect (MPE) that induces ferromagnetism in graphene. In contrast to conventional spin valves, where switching between high- and low-resistance configuration requires magnetization reversal by an applied magnetic field or a high-density spin-polarized current, we provide an alternative path with the gate-controlled spin inversion in graphene.

SELECTION OF CITATIONS
SEARCH DETAIL