Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Immunol ; 25(5): 764-777, 2024 May.
Article in English | MEDLINE | ID: mdl-38609546

ABSTRACT

The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.


Subject(s)
Immunologic Deficiency Syndromes , Nerve Tissue Proteins , Ubiquitins , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Female , Male , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/genetics , Inflammation/immunology , Inflammation/genetics , B-Lymphocytes/immunology , Loss of Function Mutation , Fibroblasts/metabolism , Fibroblasts/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Mice , Alleles
2.
Mol Metab ; 87: 101988, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004142

ABSTRACT

OBJECTIVE: Receptor-interacting protein kinase 1 (RIPK1) orchestrates the decision between cell survival and cell death in response to tumor necrosis factor (TNF) and other cytokines. Whereas the scaffolding function of RIPK1 is crucial to prevent TNF-induced apoptosis and necroptosis, its kinase activity is required for necroptosis and partially for apoptosis. Although TNF is a proinflammatory cytokine associated with ß-cell loss in diabetes, the mechanism by which TNF induces ß-cell demise remains unclear. METHODS: Here, we dissected the contribution of RIPK1 scaffold versus kinase functions to ß-cell death regulation using mice lacking RIPK1 specifically in ß-cells (Ripk1ß-KO mice) or expressing a kinase-dead version of RIPK1 (Ripk1D138N mice), respectively. These mice were challenged with streptozotocin, a model of autoimmune diabetes. Moreover, Ripk1ß-KO mice were further challenged with a high-fat diet to induce hyperglycemia. For mechanistic studies, pancreatic islets were subjected to various killing and sensitising agents. RESULTS: Inhibition of RIPK1 kinase activity (Ripk1D138N mice) did not affect the onset and progression of hyperglycemia in a type 1 diabetes model. Moreover, the absence of RIPK1 expression in ß-cells did not affect normoglycemia under basal conditions or hyperglycemia under diabetic challenges. Ex vivo, primary pancreatic islets are not sensitised to TNF-induced apoptosis and necroptosis in the absence of RIPK1. Intriguingly, we found that pancreatic islets display high levels of the antiapoptotic cellular FLICE-inhibitory protein (cFLIP) and low levels of apoptosis (Caspase-8) and necroptosis (RIPK3) components. Cycloheximide treatment, which led to a reduction in cFLIP levels, rendered primary islets sensitive to TNF-induced cell death which was fully blocked by caspase inhibition. CONCLUSIONS: Unlike in many other cell types (e.g., epithelial, and immune), RIPK1 is not required for cell death regulation in ß-cells under physiological conditions or diabetic challenges. Moreover, in vivo and in vitro evidence suggest that pancreatic ß-cells do not undergo necroptosis but mainly caspase-dependent death in response to TNF. Last, our results show that ß-cells have a distinct mode of regulation of TNF-cytotoxicity that is independent of RIPK1 and that may be highly dependent on cFLIP.

SELECTION OF CITATIONS
SEARCH DETAIL