Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Appl Environ Microbiol ; 90(4): e0228423, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38445904

ABSTRACT

Halocins are antimicrobial peptides secreted by haloarchaea capable of inhibiting the growth of other haloarchaea or bacteria. Halocin H4 (HalH4) is secreted by the model halophilic archaeon Haloferax mediterranei ATCC 33500. Despite attempts to express halH4 heterologously in Escherichia coli and subsequent careful renaturation procedures commonly employed for haloarchaeal proteins, no active halocin was obtained. However, it was discovered that the antihaloarchaeal activity of this halocin could be activated through cleavage by halolysin R4 (HlyR4), a serine protease also secreted by Hfx. mediterranei ATCC 33500. Replacement of the cysteine at the number 115 amino acid with glycine and deletion of the internal trans-membrane region (15 aa) markedly abolished HalH4's antihaloarchaeal activity. Compared to the N-terminus, the C-terminal amino acid sequence was found to be more crucial for HalH4 to exert its antihaloarchaeal activity. Mass spectrometry analysis revealed that the biologically active antihaloarchaeal peptide produced after hydrolytic cleavage by HlyR4 was the C-terminus of HalH4, suggesting a potential mechanism of action involving pore formation within competitor species' cell membranes. Taken together, this study offers novel insights into the interplay between halocins and secreted proteases, as well as their contribution to antagonistic interaction within haloarchaea. IMPORTANCE: The antihaloarchaeal function of halocin H4 (HalH4) can be activated by extracellular proteases from haloarchaea, as demonstrated in this study. Notably, we report the first instance of halocin activation through proteolytic cleavage, highlighting its significance in the field. The C-terminus of HalH4 (CTH4) has been identified as the antihaloarchaeal peptide present in hydrolysates generated by HlyR4. The CTH4 exhibited inhibitory activity against a range of haloarchaeal species (Haloarchaeobius spp., Haloarcula spp., Haloferax spp., Halorubellus spp., and Halorubrum spp.), as well as selected bacterial species (Aliifodinibius spp. and Salicola spp.), indicating its broad-spectrum inhibitory potential across domains. The encoding gene of halocin HalH4, halH4, from the model halophilic archaeon Haloferax mediterranei ATCC 33500 can be expressed in Escherichia coli without codon optimization.


Subject(s)
Haloferax mediterranei , Haloferax , Serine Endopeptidases/metabolism , Peptides/metabolism , Haloferax/metabolism , Escherichia coli/genetics
2.
Curr Microbiol ; 81(3): 71, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38253911

ABSTRACT

An extremely halophilic archaeon strain named FL173T was isolated from a salt mine (Anhui Province, China). Colonies on agar plate are orange-red, moist, and opaque. Cells are motile, Gram-stain-negative, polymorphic, and lyse in distilled water. Cells are able to grow at temperatures, NaCl concentrations, and pH ranging from 20 to 50 °C (optimum 42 °C), 2.6 to 5.1 M NaCl concentration (optimum 3.4 M), and 5.5 to 9.5 pH (optimum 7.0), respectively. Mg2+ is not necessary for growth. The major polar lipids of strain FL173T were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfonate (PGS), sulfonated mannosyl glycolipid (S-DGD-1). It has two copies of the 16S rRNA gene, which share the highest sequence similarity (93.04-99.02% sequence similarity) to the 16S rRNA genes of Halomicroarcula salinisoli F24AT, respectively. The rpoB' gene of strain FL173T showed the highest sequence similarity (93.76%) to that of H. salinisoli F24AT. The genome-based analysis showed that the average amino-acid identity (AAI), orthologous average nucleotide identity (ANI) and in silico DNA-DNA hybridization values between strains FL173T and H. salinisoli F24AT were 84.80%, 85.29%, and 29.70%, respectively, which are far below the threshold for the delineation of a prokaryotic new species. The DNA G+C content of strain FL173T is 64.9%. Genomic, physiological, biochemical, and phenotypic evidences showed that strain FL173T (CGMCC 1.18851=NBRC 114260) represents a new species of the genus Halomicroarcula, for which the name Halomicroarcula salaria sp. nov. is proposed.


Subject(s)
Perciformes , Sodium Chloride , Animals , RNA, Ribosomal, 16S/genetics , Genomics , Alkanesulfonates , Phosphatidylglycerols , DNA
3.
J Am Soc Nephrol ; 34(6): 1105-1119, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36995132

ABSTRACT

SIGNIFICANCE STATEMENT: Congenital obstructive uropathy (COU) is a prevalent human developmental defect with highly heterogeneous clinical presentations and outcomes. Genetics may refine diagnosis, prognosis, and treatment, but the genomic architecture of COU is largely unknown. Comprehensive genomic screening study of 733 cases with three distinct COU subphenotypes revealed disease etiology in 10.0% of them. We detected no significant differences in the overall diagnostic yield among COU subphenotypes, with characteristic variable expressivity of several mutant genes. Our findings therefore may legitimize a genetic first diagnostic approach for COU, especially when burdening clinical and imaging characterization is not complete or available. BACKGROUND: Congenital obstructive uropathy (COU) is a common cause of developmental defects of the urinary tract, with heterogeneous clinical presentation and outcome. Genetic analysis has the potential to elucidate the underlying diagnosis and help risk stratification. METHODS: We performed a comprehensive genomic screen of 733 independent COU cases, which consisted of individuals with ureteropelvic junction obstruction ( n =321), ureterovesical junction obstruction/congenital megaureter ( n =178), and COU not otherwise specified (COU-NOS; n =234). RESULTS: We identified pathogenic single nucleotide variants (SNVs) in 53 (7.2%) cases and genomic disorders (GDs) in 23 (3.1%) cases. We detected no significant differences in the overall diagnostic yield between COU sub-phenotypes, and pathogenic SNVs in several genes were associated to any of the three categories. Hence, although COU may appear phenotypically heterogeneous, COU phenotypes are likely to share common molecular bases. On the other hand, mutations in TNXB were more often identified in COU-NOS cases, demonstrating the diagnostic challenge in discriminating COU from hydronephrosis secondary to vesicoureteral reflux, particularly when diagnostic imaging is incomplete. Pathogenic SNVs in only six genes were found in more than one individual, supporting high genetic heterogeneity. Finally, convergence between data on SNVs and GDs suggest MYH11 as a dosage-sensitive gene possibly correlating with severity of COU. CONCLUSIONS: We established a genomic diagnosis in 10.0% of COU individuals. The findings underscore the urgent need to identify novel genetic susceptibility factors to COU to better define the natural history of the remaining 90% of cases without a molecular diagnosis.


Subject(s)
Hydronephrosis , Ureteral Obstruction , Vesico-Ureteral Reflux , Humans , DNA Copy Number Variations , Ureteral Obstruction/complications , Ureteral Obstruction/genetics , Vesico-Ureteral Reflux/diagnosis , Vesico-Ureteral Reflux/genetics , Kidney Pelvis/pathology
4.
Genet Med ; 25(12): 100983, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37746849

ABSTRACT

PURPOSE: Previous work identified rare variants in DSTYK associated with human congenital anomalies of the kidney and urinary tract (CAKUT). Here, we present a series of mouse and human studies to clarify the association, penetrance, and expressivity of DSTYK variants. METHODS: We phenotypically characterized Dstyk knockout mice of 3 separate inbred backgrounds and re-analyzed the original family segregating the DSTYK c.654+1G>A splice-site variant (referred to as "SSV" below). DSTYK loss of function (LOF) and SSVs were annotated in individuals with CAKUT, epilepsy, or amyotrophic lateral sclerosis vs controls. A phenome-wide association study analysis was also performed using United Kingdom Biobank (UKBB) data. RESULTS: Results demonstrate ∼20% to 25% penetrance of obstructive uropathy, at least, in C57BL/6J and FVB/NJ Dstyk-/- mice. Phenotypic penetrance increased to ∼40% in C3H/HeJ mutants, with mild-to-moderate severity. Re-analysis of the original family segregating the rare SSV showed low penetrance (43.8%) and no alternative genetic causes for CAKUT. LOF DSTYK variants burden showed significant excess for CAKUT and epilepsy vs controls and an exploratory phenome-wide association study supported association with neurological disorders. CONCLUSION: These data support causality for DSTYK LOF variants and highlights the need for large-scale sequencing studies (here >200,000 cases) to accurately assess causality for genes and variants to lowly penetrant traits with common population prevalence.


Subject(s)
Epilepsy , Urinary Tract , Urogenital Abnormalities , Animals , Mice , Humans , Penetrance , Mice, Inbred C3H , Mice, Inbred C57BL , Urogenital Abnormalities/genetics , Kidney/abnormalities , Risk Factors , Epilepsy/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
5.
World J Microbiol Biotechnol ; 39(7): 189, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37157004

ABSTRACT

Extracellular proteases of haloarchaea can adapt to high concentrations of NaCl and can find useful applications in industrial or biotechnology processes where hypersaline conditions are desired. The diversity of extracellular proteases produced by haloarchaea is largely unknown though the genomes of many species have been sequenced and are publicly available. In this study, a gene encoding the extracellular protease Hly176B from the haloarchaeon Haloarchaeobius sp. FL176 was cloned and expressed in Escherichia coli. A related gene homolog to hly176B, hly176A, from the same strain was also expressed in E.coli, but did not show any proteinase activity after the same renaturation process. Therefore, we focus on the enzymatic properties of the Hly176B. The catalytic triad Asp-His-Ser was confirmed via site-directed mutagenesis, indicating that Hly176B belongs to the class of serine proteases (halolysin). Unlike previously reported extracellular proteases from haloarchaea, the Hly176B remained active for a relatively long time in an almost salt-free solution. In addition, the Hly176B displayed prominent tolerance to some metal ions, surfactants and organic solvents, and exerts its highest enzyme activity at 40 °C, pH 8.0 and 0.5 M NaCl. Therefore, this study enriches our knowledge of extracellular proteases and expands their applications for various industrial uses.


Subject(s)
Serine Endopeptidases , Sodium Chloride , Serine Endopeptidases/genetics , Serine Proteases/genetics
6.
Am J Hum Genet ; 105(1): 29-47, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31204011

ABSTRACT

Genome-wide association studies (GWASs) have identified approximately 100 colorectal cancer (CRC) risk loci. However, the causal genes in these loci have not been systematically interrogated. We conducted a high-throughput RNA-interference functional screen to identify the genes essential for proliferation in the CRC risk loci of Asian populations. We found that ATF1, located in the 12q13.12 region, functions as an oncogene that facilitates cell proliferation; ATF1 has the most significant effect of the identified genes and promotes CRC xenograft growth by affecting cell apoptosis. Next, by integrating a fine-mapping analysis, a two-stage affected-control study consisting of 6,213 affected individuals and 10,388 controls, and multipronged experiments, we elucidated that two risk variants, dbSNP: rs61926301 and dbSNP: rs7959129, that located in the ATF1 promoter and first intron, respectively, facilitate a promoter-enhancer interaction, mediated by the synergy of SP1 and GATA3, to upregulate ATF1 expression, thus synergistically predisposing to CRC risk (OR = 1.77, 95% CI = 1.42-2.21, p = 3.16 × 10-7; Pmultiplicative-interaction = 1.20 × 10-22; Padditive-interaction = 6.50 × 10-3). Finally, we performed RNA-seq and ChIP-seq assays in CRC cells treated with ATF1 overexpression in order to dissect the target programs of ATF1. Results showed that ATF1 activates a subset of genes, including BRAF, NRAS, MYC, BIRC2, DAAM1, MAML2, STAT1, ID1, and NKD2, related to apoptosis, Wnt, TGF-ß, and MAPK pathways, and these effects could cooperatively increase the risk of CRC. These findings reveal the clinical potential of ATF1 in CRC development and illuminate a promoter-enhancer interaction module between the ATF1 regulatory elements dbSNP: rs61926301 and dbSNP: rs7959129, and they bring us closer to understanding the molecular drivers of cancer.


Subject(s)
Activating Transcription Factor 1/metabolism , Colorectal Neoplasms/pathology , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Activating Transcription Factor 1/antagonists & inhibitors , Activating Transcription Factor 1/genetics , Animals , Apoptosis , CRISPR-Cas Systems , Case-Control Studies , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Female , Gene Editing , Genetic Predisposition to Disease , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Quantitative Trait Loci , RNA Interference , Risk Factors , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Aquac Nutr ; 2022: 7057571, 2022.
Article in English | MEDLINE | ID: mdl-36860464

ABSTRACT

Fish in natural and cultivated environments can be challenged by starvation. However, inducing starvation in a controlled manner cannot only reduce feed consumption but also reduces aquatic eutrophication and even improves farmed fish quality. This study investigated the effects of starvation on the muscular function, morphology, and regulatory signaling in javelin goby (Synechogobius hasta) by evaluating the biochemical, histological, antioxidant, and transcriptional changes in the musculature of S. hasta subjected to 3, 7, and 14 days fasting. The muscle glycogen and triglyceride levels in S. hasta were gradually reduced under starvation, reaching their lowest at the end of the trial (P < 0.05). The levels of glutathione and superoxide dismutase were significantly elevated after 3-7 days of starvation (P < 0.05), but later returned to the level of the control group. The muscle of starved S. hasta developed structural abnormalities in some areas after 7 days of food deprivation, and more vacuolation and more atrophic myofibers were observed in 14-day fasted fish. The transcript levels of stearoyl-CoA desaturase 1 (scd1), the key gene involved in the biosynthesis of monounsaturated fatty acids, were markedly lower in the groups starved for 7 or more days (P < 0.05). However, the relative expressions of genes associated with lipolysis were decreased in the fasting experiment (P < 0.05). Similar declines in the transcriptional response to starvation were found in muscle fatp1 and ppar γ abundance (P < 0.05). Furthermore, the de novo transcriptome of muscle tissue from the control, 3-day and 14-day starved S. hasta generated 79,255 unigenes. The numbers of differentially expressed genes (DEGs) identified by pairwise comparisons among three groups were 3276, 7354, and 542, respectively. The enrichment analysis revealed that the DEGs were primarily involved in metabolism-related pathways, including ribosome, TCA pathway, and pyruvate metabolism. Moreover, the qRT-PCR results of 12 DEGs validated the expression trends observed in the RNA-seq data. Taken together, these findings demonstrated the specific phenotypical and molecular responses of muscular function and morphology in starved S. hasta, which may offer preliminary reference data for optimizing operational strategies incorporating fasting/refeeding cycles in aquaculture.

8.
Nucleic Acids Res ; 47(D1): D874-D880, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30215764

ABSTRACT

Protein post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, acetylation, glycosylation et al, are very important biological processes. PTM changes in some critical genes, which may be induced by base-pair substitution, are shown to affect the risk of diseases. Recently, large-scale exome-wide association studies found that missense single nucleotide polymorphisms (SNPs) play an important role in the susceptibility for complex diseases or traits. One of the functional mechanisms of missense SNPs is that they may affect PTMs and leads to a protein dysfunction and its downstream signaling pathway disorder. Here, we constructed a database named AWESOME (A Website Exhibits SNP On Modification Event, http://www.awesome-hust.com), which is an interactive web-based analysis tool that systematically evaluates the role of SNPs on nearly all kinds of PTMs based on 20 available tools. We also provided a well-designed scoring system to compare the performance of different PTM prediction tools and help users to get a better interpretation of results. Users can search SNPs, genes or position of interest, filter with specific modifications or prediction methods, to get a comprehensive PTM change induced by SNPs. In summary, our database provides a convenient way to detect PTM-related SNPs, which may potentially be pathogenic factors or therapeutic targets.


Subject(s)
Databases, Protein , Polymorphism, Single Nucleotide , Protein Processing, Post-Translational/genetics , Genome, Human , Humans
9.
Nucleic Acids Res ; 47(D1): D909-D916, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30329095

ABSTRACT

Alternative splicing (AS) is a widespread process that increases structural transcript variation and proteome diversity. Aberrant splicing patterns are frequently observed in cancer initiation, progress, prognosis and therapy. Increasing evidence has demonstrated that AS events could undergo modulation by genetic variants. The identification of splicing quantitative trait loci (sQTLs), genetic variants that affect AS events, might represent an important step toward fully understanding the contribution of genetic variants in disease development. However, no database has yet been developed to systematically analyze sQTLs across multiple cancer types. Using genotype data from The Cancer Genome Atlas and corresponding AS values calculated by TCGASpliceSeq, we developed a computational pipeline to identify sQTLs from 9 026 tumor samples in 33 cancer types. We totally identified 4 599 598 sQTLs across all cancer types. We further performed survival analyses and identified 17 072 sQTLs associated with patient overall survival times. Furthermore, using genome-wide association study (GWAS) catalog data, we identified 1 180 132 sQTLs overlapping with known GWAS linkage disequilibrium regions. Finally, we constructed a user-friendly database, CancerSplicingQTL (http://www.cancersplicingqtl-hust.com/) for users to conveniently browse, search and download data of interest. This database provides an informative sQTL resource for further characterizing the potential functional roles of SNPs that control transcript isoforms in human cancer.


Subject(s)
Alternative Splicing , Databases, Nucleic Acid , Neoplasms/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Genome-Wide Association Study , Humans , Linkage Disequilibrium
10.
Carcinogenesis ; 41(6): 761-768, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32047883

ABSTRACT

N 6-methyladenosine (m6A) is an abundant modification in RNAs that affects RNA metabolism, and it is reported to be closely related to cancer occurrence and metastasis. In this study, we focused on evaluating the associations between genetic variants in m6A modification genes and the risk of esophageal squamous-cell carcinoma (ESCC). By integrating data of our previous genome-wide association studies and the predictions of several annotation tools, we identified a single nucleotide polymorphism, rs2416282 in the promoter of YTHDC2, that was significantly associated with the susceptibility of ESCC (odds ratio = 0.84, 95% CI: 0.77-0.92, P = 2.81 × 10-4). Through further functional experiments in vitro, we demonstrated that rs2416282 regulated YTHDC2 expression. Knockdown of YTHDC2 substantially promoted the proliferation rate of ESCC cells by affecting several cancer-related signaling pathways. Our results suggested that rs2416282 contributed to ESCC risk by regulating YTHDC2 expression. This study provided us a valuable insight into the roles of genetic variants in m6A modification genes for ESCC susceptibility and may contribute to the prevention of this disease in the future.


Subject(s)
Adenosine/analogs & derivatives , Biomarkers, Tumor/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Polymorphism, Single Nucleotide , RNA Helicases/genetics , RNA Processing, Post-Transcriptional , Adenosine/chemistry , Apoptosis , Asian People/genetics , Case-Control Studies , Cell Proliferation , China/epidemiology , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/epidemiology , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic , Humans , Prognosis , RNA Helicases/chemistry , Tumor Cells, Cultured
11.
J Cell Mol Med ; 24(3): 2252-2259, 2020 02.
Article in English | MEDLINE | ID: mdl-31880394

ABSTRACT

As promising biomarkers and therapy targets, microRNAs (miRNAs) are involved in various physiological and tumorigenic processes. Genetic variants in miRNA-binding sites can lead to dysfunction of miRNAs and contribute to disease. However, systematic investigation of the miRNA-related single nucleotide polymorphisms (SNPs) for pancreatic cancer (PC) risk remains elusive. We performed integrative bioinformatics analyses to select 31 SNPs located in miRNA-target binding sites using the miRNASNP v2.0, a solid database providing miRNA-related SNPs for genetic research, and investigated their associations with risk of PC in two large case-control studies totally including 1847 cases and 5713 controls. We observed that the SNP rs3802266 is significantly associated with increased risk of PC (odds ratio (OR) = 1.21, 95% confidence intervals (CI) = 1.11-1.31, P = 1.29E-05). Following luciferase reporter gene assays show that rs3802266-G creates a stronger binding site for miR-181a-2-3p in 3' untranslated region (3'UTR) of the gene ZHX2. Expression quantitative trait loci (eQTL) analysis suggests that ZHX2 expression is lower in individuals carrying rs3802266-G with increased PC risk. In conclusion, our findings highlight the involvement of miRNA-binding SNPs in PC susceptibility and provide new clues for PC carcinogenesis.


Subject(s)
Asian People/genetics , Binding Sites/genetics , Genetic Predisposition to Disease/genetics , MicroRNAs/genetics , Pancreatic Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , 3' Untranslated Regions/genetics , Case-Control Studies , Cell Line, Tumor , Female , Humans , Male , Middle Aged
12.
Int J Cancer ; 146(12): 3281-3293, 2020 06 15.
Article in English | MEDLINE | ID: mdl-31509622

ABSTRACT

The N6 -Methyladenosine (m6 A) modification plays an important role in many biological processes, especially tumor development. However, little is still known about how it affects colorectal cancer (CRC) carcinogenesis. Here, we first systematically investigate the association of variants related to m6 A modification with the CRC risk in 1,062 CRC cases and 2,184 controls by using our exome-wide association data and followed by two replication sets including 7,341 CRC cases and 7,902 controls. The variant rs8100241 located in ANKLE1 was significantly associated with CRC risk (odds ratio = 0.88, 95% confidence interval = 0.84-0.92, p = 4.85 × 10-8 ) in 8,403 cases and 10,086 controls. This variant was previously identified to be associated with the susceptibility of breast cancer with BRCA1 mutation triple negative breast cancer. Further functional analysis indicated that overexpression of the rs8100241[A] allele significantly increased the ANKLE1 m6 A level and facilitated the ANKLE1 protein expression compared to that of rs8100241[G] allele. We further found the ANKLE1 m6 A modification was catalyzed by the "writer" complex (METTL3, METTL14, or WTAP) and recognized by the "reader" YTHDF1. Mechanistically, we found that the ANKLE1 functions as a potential tumor suppressor that inhibits cell proliferation and facilitates the genomic stability. An elevated frequency of micronucleated cells, increased cell proliferation, and colony formation ability were observed when ANKLE1 knockdown. Our study illustrated that the germline missense variant can increase CRC risk by influencing ANKLE1 m6 A level, highlighting a clinical potential of variants-associated m6 A modification as a risk marker for CRC prevention.


Subject(s)
Adenosine/analogs & derivatives , Colorectal Neoplasms/genetics , Endonucleases/genetics , Genetic Predisposition to Disease , Genomic Instability , Adenosine/metabolism , Aged , Carcinogenesis/genetics , Case-Control Studies , Cell Proliferation/genetics , DNA Methylation , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HCT116 Cells , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
13.
Mol Carcinog ; 59(4): 439-446, 2020 04.
Article in English | MEDLINE | ID: mdl-32056283

ABSTRACT

Our previous study identified a tag single-nucleotide polymorphism (SNP) rs204900 in TNXB associated with risk of esophageal squamous-cell carcinoma (ESCC) in the Chinese population. However, the functional role of TNXB and causal variants had not been interrogated in that study. In the present study, we explored the effects of TNXB expression in the development of ESCC and searched for functional variants in this gene. We found TNXB was downregulated in ESCC tumors. Using small interfering RNAs and CRISPR-Cas9 methods, we identified that both knockdown and knockout of TNXB significantly promoted ESCC cell growth in vitro, suggesting a tumor suppressor role of this gene in ESCC. Through further fine-mapping analysis, we identified that a noncoding variant in the promoter of TNXB, rs411337, predisposed to ESCC risk (odds ratio = 1.36, 95% confidence interval: 1.22-1.51, P = 9.10 × 10-9 ). These findings revealed the functional mechanism of TNXB in the development of ESCC and may contribute to the prevention and treatment of this disease in the future.


Subject(s)
Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Tenascin/genetics , CRISPR-Cas Systems , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Esophageal Neoplasms/pathology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , RNA Interference , Risk Factors
14.
Arch Toxicol ; 94(1): 295-303, 2020 01.
Article in English | MEDLINE | ID: mdl-31642979

ABSTRACT

GWAS-identified 10q22.3 loci with lead SNP rs704017 are significantly associated with CRC risk in both Asian and European populations. However, the functional mechanism of this region is unclear. In this study, we performed a fine-mapping analysis to identify the causal SNPs. To identify potential functional SNPs in linkage disequilibrium with the lead SNP, we searched for the potential target genes using a Hi-C database and an RNA interfering-based on-chip approach. The results indicated that rs12263636 (r2 = 0.41) showed the highest potential to be functional. It resided in a region with enhancer markers and a topologically associating domain. We found that RPS24 was the only gene that significantly promoted the proliferation rate of CRC cells and might have promoter-enhancer interaction with rs12263636. Dual-luciferase reporter assays confirmed that the risk alleles of two variants (rs3740253 and rs7071351) in RPS24 promoter could increase the expression of luciferase. Case control study consisting of 1134 cases and 2039 health controls confirmed that both the two variants were associated with risk of CRC (rs3740253: P = 0.0079, OR = 1.15, 95% CI 1.04-1.28; rs7071351: P = 0.0085, OR = 1.15, 95% CI 1.04-1.28). And plasmid containing mutant haplotypes containing all the three mutations (rs12263636 or rs3740253 and rs7071351) could most significantly increase luciferase expression, compared with any haplotype of the three mutations. The study explained the functional mechanism for the 10q22.3 loci and provided new insights into the prevention and treatment of CRC.


Subject(s)
Colorectal Neoplasms/genetics , Polymorphism, Single Nucleotide , Ribosomal Proteins/genetics , Asian People/genetics , Case-Control Studies , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Promoter Regions, Genetic
15.
Mol Carcinog ; 58(5): 760-766, 2019 05.
Article in English | MEDLINE | ID: mdl-30604909

ABSTRACT

9p21.3 has been identified as an unexpected hot point in multiple diseases GWAS including cancers, and we performed a two-stage case-control studies integrating functional assay strategy to find the potential functional variants modified susceptibility to pancreatic cancer (PC). An expanded Illumina HumanExome Beadchip of PC including 943 cases and 3908 controls was used to examine 39 tagSNPs in 9p21.3 and the promising single nucleotide polymorphism (SNP) was validated in stage 2 comprising 624 cases and 1048 controls. The strongest signal was rs6475609 (Odds ratio, OR = 0.81, 95% confidence interval, CI = 0.72-0.91) maps to the long non-coding RNA ANRIL. Bioinformatics analysis revealed rs1537373 lies in the linkage disequilibrium (LD) block which the rs6475609 tagged might have potential function and was also associated with a decreased risk of PC in both stages (OR = 0.82, 95% CI = 0.75-0.90 in combined analysis). Dual luciferase reporter assay and the electrophoretic mobility shift assay (EMSA) verified rs1537373 as the best candidate causative variant for influencing the activity of enhancer through differential binding to certain transcription factor. The expression quantitative trait loci (e-QTL) analysis indicated the genotypes of rs1537373 were associated with expression of CDKN2B gene (P dominant = 6.00 × 10-4 ). In conclusion, our study provided evidence that rs1537373 in ANRIL may influence transcription factor binding and regulate CDKN2B expression, thus confer the susceptibility to PC.


Subject(s)
Biomarkers, Tumor/genetics , Chromosomes, Human, Pair 9 , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Case-Control Studies , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Prognosis , Risk Factors
16.
Mol Carcinog ; 58(10): 1855-1862, 2019 10.
Article in English | MEDLINE | ID: mdl-31237042

ABSTRACT

As the proper binding of CCCTC-binding factor (CTCF) in the boundaries of topological association domains (TADs) was important for chromatin structures and gene regulation, we hypothesized that single nucleotide polymorphisms (SNPs) affecting CTCF binding in TAD boundaries might contribute to pancreatic cancer (PC) susceptibility. We first genome widely screened out potential SNPs via bioinformatics analysis on Hi-C data, ChIP-seq data, and CTCF binding motif, then tested their associations with PC risk in a previous genome-wide association studies (GWASs) data set (981 cases and 1,991 controls), followed by another independent replication set (1,208 cases and 1,465 controls). Electrophoretic mobility shift assays (EMSAs), expression Quantitative Trait Loci (eQTL) analyses and cell proliferation experiments were performed to uncover the biological mechanisms. The positive SNP rs2001389 was found significantly associated with PC risk with odds ratio (OR) being 1.166 (95% confidence interval (CI) = 1.075-1.264, P = 2.143E-04) in the combined study. The allele G of rs2001389 weakened the binding activity with CTCF, and it was related to the lower expression of a putative antioncogene MFSD13A whose knockdown promoted proliferation of PC cells. By integrating analysis on multiomics data, association studies and functional assays, we proposed that the common variant rs2001389 and the gene MFSD13A might be genetic modifiers of PC tumorigenesis.


Subject(s)
CCCTC-Binding Factor/genetics , Carcinogenesis/genetics , Membrane Proteins/genetics , Pancreatic Neoplasms/genetics , Adult , Aged , Binding Sites/genetics , Cell Proliferation/genetics , Chromatin/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Humans , Male , Middle Aged , Pancreatic Neoplasms/pathology , Polymorphism, Single Nucleotide/genetics , Protein Domains/genetics , Quantitative Trait Loci/genetics , Risk Factors
17.
J Viral Hepat ; 26(10): 1178-1185, 2019 10.
Article in English | MEDLINE | ID: mdl-31177598

ABSTRACT

The SLC10A1 Ser267Phe (S267F) variant has been reported to severely inhibit hepatitis B virus (HBV) infection and taurocholate transport activity. This study aimed to clarify the effects of this variant on HBV infection and bile acid metabolism. SLC10A1 S267F was genotyped in 2907 HBV-exposed subjects (including HBV persistent carriers and spontaneously recovered subjects) and 1364 unexposed subjects (HBV marker-negative subjects), followed by replication I, comprising 914 exposed subjects and 1123 unexposed subjects, and replication II, comprising 355 children born to HBsAg-positive mothers (226 HBV-infected children and 129 controls). Intriguingly, SLC10A1 AA was observed only in the unexposed group, but not in the exposed group. The SLC10A1 A allele consistently decreased HBV infection risk compared with the G allele (OR = 0.76, 95% CI: 0.64-0.90 in combined samples). In addition, children with the SLC10A1 GA genotype had a reduced risk of perinatal transmission (OR = 0.31, 95% CI: 0.14-0.71). Moreover, unexposed subjects with the SLC10A1 AA genotype exhibited decreased serum total cholesterol and low-density lipoprotein cholesterol compared to those with the GG or GA genotypes (P = 2.975 × 10-4 and 0.004, respectively). The study highlighted the role of the SLC10A1 S267F variant in the loss of the ability to support HBV infection and taurocholate transport activity. Subjects with the AA genotype may escape from HBV infection and present decreased cholesterol levels as a consequence of impaired bile acid uptake.


Subject(s)
Bile Acids and Salts/metabolism , Cholesterol/blood , Genetic Predisposition to Disease , Hepatitis B/epidemiology , Hepatitis B/genetics , Mutation, Missense , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/genetics , Adult , Aged , Case-Control Studies , Epidemiologic Studies , Female , Genotyping Techniques , Hepatitis B/transmission , Humans , Male , Middle Aged , Mutant Proteins/genetics
18.
Liver Int ; 39(10): 1927-1936, 2019 10.
Article in English | MEDLINE | ID: mdl-31033131

ABSTRACT

BACKGROUND & AIMS: Genome-wide association studies have identified multiple genetic signals associated with the risk of persistent hepatitis B virus (HBV) infection and HBV-related hepatocellular carcinoma. However, the majority of the associated variants may only be markers of functional variants and the underlying biological mechanisms remain elusive. We hypothesized that the functional variants with modulating transcription factor (TF) binding affinity in genome-wide association studies-identified loci may influence the risk of persistent HBV infection in Chinese people. METHODS: A systematic bioinformatics approach was implemented to prioritize potential functional variants that may influence TF binding. A two-stage case-control study, including 1595 HBV-persistent carriers and 1590 subjects with HBV natural clearance, was conducted to examine the associations between candidate variants and susceptibility to persistent HBV infection. Biological assays were carried out to elucidate the underlying mechanism of the associated genetic variants. RESULTS: Twelve candidate variants were identified, and rs2523454 G > A increased the risk of persistent HBV infection (dominant model: ORcombined  = 1.37, 95% CI = 1.19-1.58, P = 1.610 × 10-5 ). Functional assays indicated that the rs2523454 A allele significantly decreased transcriptional activity compared to the G allele by influencing TF-binding affinity. In addition, expression quantitative trait loci analyses revealed that the A allele was associated with the reduced expression of MICA (P < 0.01). CONCLUSIONS: Our findings suggest that the germline G > A variation at rs2523454 may influence TF-DNA interaction, downregulate the expression of MICA and play an important role in the development of persistent HBV infection in the Chinese population.


Subject(s)
Hepatitis B/genetics , Histocompatibility Antigens Class I/genetics , Polymorphism, Single Nucleotide , Adult , Alleles , Case-Control Studies , China , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Hepatitis B virus , Heterozygote , Humans , Male , Middle Aged
19.
Mol Carcinog ; 57(12): 1845-1854, 2018 12.
Article in English | MEDLINE | ID: mdl-30182384

ABSTRACT

Despite the successes of genome-wide association study (GWAS) in identifying breast cancer (BC) risk-associated variants, only a small fraction of the heritability can be explained. The greatest challenge in the post-GWAS is to identify causal variants and underlying mechanisms responsible for BC susceptibility. In this study, we integrated functional genomic data from ENCODE ChIP-seq, ANNOVAR, and the TRANSFAC matrix to identify potentially regulatory variants with modulating FOXA1-binding affinity across the whole genome, and then conducted a two-stage case-control study including 2164 cases and 2382 controls to investigate the associations between candidate SNPs and BC susceptibility. We identified a BC susceptibility SNP, rs6506689 G>T, with an odds ratio (OR) of 1.23 (95% confidence interval = 1.07-1.40, P = 0.003) under a dominant model in the combined study. Biological assays indicated that the germline G>T variation at rs6506689 creates a FOXA1-binding site and up-regulates the expression of RAB31, thus playing an important role in the development of BC. Our results highlight the importance of regulatory genetic variants in the development of BC by influencing TF-DNA interaction and provide critical insights to pinpoint causal genetic variants.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Profiling/methods , Genetic Association Studies/methods , Germ-Line Mutation , Polymorphism, Single Nucleotide , rab GTP-Binding Proteins/genetics , Binding Sites , Case-Control Studies , Cell Line, Tumor , Female , Genetic Predisposition to Disease , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , MCF-7 Cells , Odds Ratio , Sequence Analysis, RNA/methods , rab GTP-Binding Proteins/chemistry , rab GTP-Binding Proteins/metabolism
20.
Carcinogenesis ; 38(2): 177-183, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28039327

ABSTRACT

Genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) associated with colorectal cancer (CRC) susceptibility. However, the elucidation of causal SNPs and the biological mechanisms behind are still limited. In this study, we initially performed systematic bioinformatics analyses on CRC GWAS-identified loci to seek for potential functional SNPs located at transcription factor binding sites (TFBSs), and then a two-stage case-control study comprised of 1353 cases and 1448 controls of Chinese populations and functional analyses were conducted. As a result, only one SNP rs6695837 out of the nine candidate SNPs survived after two-stage analyses by Bonferroni correction. In combined analyses, rs6695837 exhibited significant associations with CRC risk (TT: CC, odds ratio (OR) = 1.31, 95% confidence interval (CI) = 1.06-1.63; dominant model, OR = 1.21, 95% CI = 1.03-1.43; additive model, OR = 1.15, 95% CI = 1.03-1.28). Functional annotations by RegulomeDB and rSNPBase indicated its biological role and dual-luciferase reporter assays revealed a significant increase in luciferase expression for the reconstructed plasmid with rs6695837T allele, compared with the one with C allele (PSW480 = 0.0002, PLovo = 0.0003). Further gene expression analyses demonstrated significantly higher expression of LAMC1 gene in CRC tumor tissues than that in adjacent non-cancerous tissues (P = 0.0004). These findings strongly suggest that the functional SNP located at TFBSs, rs6695837 might contribute to CRC susceptibility, and the exact biological mechanism awaits further research.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Laminin/genetics , Transcription Factors/genetics , Aged , Alleles , Asian People , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Genotype , Humans , Laminin/biosynthesis , Male , Middle Aged , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL