Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Phys Chem Chem Phys ; 17(33): 21547-54, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26220067

ABSTRACT

For structures that can be treated as networks of rigid, corner-connected polyhedra, the dominant distortion modes can be described by so-called rigid unit modes that are close to zero frequency. This type of behaviour is common in zeolitic/zeotypic materials such as the AlPO4 family of compounds and has been suggested by some authors to play a significant role in molecular diffusion within the pores of such compounds. We explore the energy and temperature dependence of these modes in AlPO4-5 using inelastic neutron scattering and heat capacity measurements. Ab initio based computational modelling is also used to assign the observed dynamic behaviour to rigid unit modes. We observe that these rigid unit modes persist down to very low temperatures and show no signs of freezing out.

2.
J Chem Phys ; 140(1): 014903, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24410238

ABSTRACT

Discotic liquid crystalline (DLC) charge transfer (CT) complexes combine visible light absorption and rapid charge transfer characteristics, being favorable properties for photovoltaic (PV) applications. We present a detailed study of the electronic and vibrational properties of the prototypic 1:1 mixture of discotic 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and 2,4,7-trinitro-9-fluorenone (TNF). It is shown that intermolecular charge transfer occurs in the ground state of the complex: a charge delocalization of about 10(-2) electron from the HAT6 core to TNF is deduced from both Raman and our previous NMR measurements [L. A. Haverkate, M. Zbiri, M. R. Johnson, B. Deme, H. J. M. de Groot, F. Lefeber, A. Kotlewski, S. J. Picken, F. M. Mulder, and G. J. Kearley, J. Phys. Chem. B 116, 13098 (2012)], implying the presence of permanent dipoles at the donor-acceptor interface. A combined analysis of density functional theory calculations, resonant Raman and UV-VIS absorption measurements indicate that fast relaxation occurs in the UV region due to intramolecular vibronic coupling of HAT6 quinoidal modes with lower lying electronic states. Relatively slower relaxation in the visible region the excited CT-band of the complex is also indicated, which likely involves motions of the TNF nitro groups. The fast quinoidal relaxation process in the hot UV band of HAT6 relates to pseudo-Jahn-Teller interactions in a single benzene unit, suggesting that the underlying vibronic coupling mechanism can be generic for polyaromatic hydrocarbons. Both the presence of ground state CT dipoles and relatively slow relaxation processes in the excited CT band can be relevant concerning the design of DLC based organic PV systems.

3.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557879

ABSTRACT

Dynamic neutron scattering probes unique nanoscale dynamics via measurement of energy exchanged between a sample and the neutrons. The two spectrometers that investigate processes with characteristic times around a nanosecond are backscattering (BS) and neutron spin-echo (NSE). We present a new method for measuring dynamics using an oscillating cosine-like energy-distribution neutron-package at the sample and measure solely the portion scattered into the elastic line. This portion corresponds to elastically scattered neutrons and, in addition, inelastic components that are scattered with a probability directly proportional to the cosine Fourier-coefficients of the exchanged-energy spectrum. The counts at the detector thus correspond to the van Hove intermediate scattering function. We denote this new method as "Fourier transform neutron scattering" (FTNS), it being broadly analogous to IR and Raman spectroscopies. Here, the realization of such a concept is investigated using an oscillating incident beam produced via a precession method and a secondary spectrometer identical to a BS instrument using crystal analyzers. The instrument is denoted "Modulated Intensity with Diffraction Analysis Spectrometer" (MIDAS). However, simpler approaches, e.g., choppers, may also be used for an FTNS instrument. The theory behind MIDAS is presented, supported by numerical calculations and in silico experiments. Finally, we present a Monte Carlo simulation to compare BS and MIDAS spectrometers. This shows that MIDAS has almost 100 times more incident flux than standard BS, but due to the better signal-to-noise ratio of BS, the final information acquisition rate gain of MIDAS is approximately a factor of 2.

4.
Phys Chem Chem Phys ; 15(47): 20555-64, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24177249

ABSTRACT

We use quasi-elastic neutron scattering spectroscopy to study the diffusive motion of water molecules at ambient temperature as a function of the solute molar fraction of the amino acid, proline. We validate molecular dynamics simulations against experimental quasielastic neutron scattering data and then use the simulations to reveal, and understand, a strong dependence of the translational self-diffusion coefficient of water on the distance to the amino acid molecule. An analysis based on the juxtaposition of water molecules in the simulation shows that the rigidity of proline imposes itself on the local water structure, which disrupts the hydrogen-bond network of water leading to an increase in the mean lifetime of hydrogen bonds. The net effect is some distortion of the proline molecule and a slowing down of the water mobility.


Subject(s)
Molecular Dynamics Simulation , Proline/chemistry , Water/chemistry , Diffusion , Energy Transfer , Hydrogen Bonding , Neutron Diffraction , Scattering, Small Angle , Temperature
5.
J Chem Phys ; 138(19): 194501, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23697422

ABSTRACT

The structure of kaolinite at the atomic level, including the effect of stacking faults, is investigated using inelastic neutron scattering (INS) spectroscopy and density functional theory (DFT) calculations. The vibrational dynamics of the standard crystal structure of kaolinite, calculated using DFT (VASP) with normal mode analysis, gives good agreement with the experimental INS data except for distinct discrepancies, especially for the low frequency modes (200-400 cm(-1)). By generating several types of stacking faults (shifts in the a,b plane for one kaolinite layer relative to the adjacent layer), it is seen that these low frequency modes are affected, specifically through the emergence of longer hydrogen bonds (O-H⋯O) in one of the models corresponding to a stacking fault of -0.3151a - 0.3151b. The small residual disagreement between observed and calculated INS is assigned to quantum effects (which are not taken into account in the DFT calculations), in the form of translational tunneling of the proton in the hydrogen bonds, which lead to a softening of the low frequency modes. DFT-based molecular dynamics simulations show that anharmonicity does not play an important role in the structural dynamics of kaolinite.


Subject(s)
Quantum Theory , Hydrogen Bonding , Kaolin , Molecular Structure , Neutron Diffraction
6.
J Am Chem Soc ; 134(6): 3265-70, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22296219

ABSTRACT

As compared to 3d (first-row) transition metals, the 4d and 5d transition metals have much more diffuse valence orbitals. Quantum cooperative phenomena that arise due to changes in the way these orbitals overlap and interact, such as magnetoelasticity, are correspondingly rare in 4d and 5d compounds. Here, we show that the 6H-perovskite Ba(3)BiIr(2)O(9), which contains 5d Ir(4+) (S = 1/2) dimerized into isolated face-sharing Ir(2)O(9) bioctahedra, exhibits a giant magnetoelastic effect, the largest of any known 5d compound, associated with the opening of a spin-gap at T* = 74 K. The resulting first-order transition is characterized by a remarkable 4% increase in Ir-Ir distance and 1% negative thermal volume expansion. The transition is driven by a dramatic change in the interactions among Ir 5d orbitals, and represents a crossover between two very different, competing, ground states: one that optimizes direct Ir-Ir bonding (at high temperature), and one that optimizes Ir-O-Ir magnetic superexchange (at low temperature).

7.
Chemistry ; 18(41): 13018-24, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-22945884

ABSTRACT

The Group XIV tetratolyl series X(C(6)H(4)-CH(3))(4) (X = C, Si, Ge, Sn, Pb) were studied by using inelastic neutron scattering to measure the low-energy phonon spectra to directly access the methyl-group torsional modes. The effect of increased molecular radius as a function of the size of the central atom was shown to have direct influence on the methyl dynamics, reinforced with the findings of molecular dynamics and contact surface calculations, based upon the solid-state structures. The torsional modes in the lightest analogue were found to be predominantly intramolecular: the Si and Ge analogues have a high degree of intermolecular methyl-methyl group interactions, whilst the heaviest analogues (Sn and Pb) showed pronounced intermolecular methyl interactions with the whole phonon bath of the lattice modes.

8.
J Phys Chem A ; 116(9): 2283-91, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22296223

ABSTRACT

We analyze the interplay between proton transfer in the hydrogen-bond bridge, O···H···O, and lattice dynamics in the model system tetraacetylethane (TAE) (CH(3)CO)(2)CH═CH(COCH(3))(2) using density functional theory. Lattice dynamics calculations and molecular dynamics simulations are validated against neutron scattering data. Hindrance to the cooperative reorientation of neighboring methyl groups at low temperatures gives a preferred O atom for the bridging proton. The amplitude of methyl torsions becomes larger with increasing temperature, so that the free-energy minimum for the proton becomes flat over 0.2 Å. For the isolated molecule, however, we show an almost temperature-independent symmetric double-well potential persists. This difference arises from the much higher barriers to methyl torsion in the crystal that make the region of torsional phase space that is most crucial for symmetrization poorly accessible. Consequently, the proton-transfer potential remains asymmetric though flat at the base, even at room temperature in the solid.

9.
Sci Rep ; 11(1): 14093, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34238981

ABSTRACT

Quasi-elastic neutron scattering (QENS)-based on the seminal work of Nobel Laureate Brockhouse-has been one of the major methods for studying pico-second to nano-second diffusive dynamics over the past 70 years. This is regarded as an "inelastic" method for dynamics. In contrast, we recently proposed a new neutron-scattering method for dynamics, which uses the elastic line of the scattering to access system dynamics directly in the time domain (Benedetto and Kearley in Sci Rep 9:11284, 2019). This new method has been denoted "vHI" that stands for "van Hove Integral". The reason is that, under certain conditions, the measured elastic intensity corresponds to the running-time integral of the intermediate scattering function, [Formula: see text], up to a time that is inversely proportional to the energy band-width incident on the sample. As a result, [Formula: see text] is accessed from the time derivative of the measured vHI profile. vHI has been supported by numerical and Monte-Carlo simulations, but has been difficult to validate experimentally due to the lack of a suitable instrument. Here we show that vHI works in practice, which we achieved by using a simple modification to the standard QENS backscattering spectrometer methodology. Basically, we varied the neutron-energy band-widths incident at the sample via a step-wise variation of the frequency of the monochromator Doppler-drive. This provides a measurement of the vHI profile at the detectors. The same instrument and sample were also used in standard QENS mode for comparison. The intermediate scattering functions, [Formula: see text], obtained by the two methods-vHI and QENS-are strikingly similar providing a direct experimental validation of the vHI method. Perhaps surprisingly, the counting statistics of the two methods are comparable even though the instrument used was expressly designed for QENS. This shows that the methodology modification adopted here can be used in practice to access vHI profiles at many of the backscattering spectrometers worldwide. We also show that partial integrations of the measured QENS spectrum cannot provide the vHI profile, which clarifies a common misconception. At the same time, we show a novel approach which does access [Formula: see text] from QENS spectra.

10.
Sci Rep ; 10(1): 6350, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32286403

ABSTRACT

We have recently proposed a new method to access system dynamics via neutron scattering based on measuring the elastic scattered intensity: By varying the energy band-width that impinges on the sample (also known as instrumental energy resolution), the purely elastic-scattering from this variation is the running time-integral of the intermediate scattering function (I(t)) [Benedetto and Kearley, Sci. Rep. 9, 11284, 2019]. In this correspondence we denote our method "vHI", which stands for "van Hove Integral". The method is now widely accepted as "valid" and here we focus on the efficiency of the vHI method compared with the standard quasi-elastic neutron scattering (QENS) method. We use a numerical Monte-Carlo simulation of an instrument that is equally capable of measuring QENS and vHI under identical conditions. For an "experiment" in which the same number of neutrons enter the instrument, we present comparisons between QENS and vHI at three levels of data-reduction. Firstly, at the raw-data level vHI achieves 100 times more neutrons at the detector than QENS. Secondly, vHI has a factor of 2 less statistical error, which would translate to an overall gain of 4 for vHI in counting-time. Lastly, we compare the distortions caused in obtaining the final I(t) via time-Fourier transform (QENS) and polynomial time-derivative (vHI). Here, the statistical error is 10 times smaller for vHI. This last comparison is the most important result where the 10 times smaller residual for vHI gives a net gain in counting time of 100 better than QENS to obtain the same underlying dynamics of the system under study.

11.
J Phys Chem B ; 113(19): 6756-65, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19388633

ABSTRACT

Density functional modeling of the crystalline layered aluminosilicate mineral kaolinite is conducted, first to reconcile discrepancies in the literature regarding the exact geometry of the inner and inner surface hydroxyl groups, and second to investigate the performance of selected exchange-correlation functionals in providing accurate structural information. A detailed evaluation of published experimental and computational structures is given, highlighting disagreements in space groups, hydroxyl bond lengths, and bond angles. A major aim of this paper is to resolve these discrepancies through computations. Computed structures are compared via total energy calculations and validated against experimental structures by comparing computed neutron diffractograms, and a final assessment is performed using vibrational spectra from inelastic neutron scattering. The density functional modeling is carried out at a sufficiently high level of theory to provide accurate structure predictions while keeping computational requirements low enough to enable the use of the structures in large-scale calculations. It is found that the best functional to use for efficient density functional modeling of kaolinite using the DMol3 software package is the BLYP functional. The computed structure for kaolinite at 0 K has C1 symmetry, with the inner hydroxyl group angled slightly above the a,b plane and the inner surface hydroxyls aligned close to perpendicular to that plane.

12.
Sci Rep ; 9(1): 11284, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375739

ABSTRACT

We present a new neutron-scattering approach to access the van Hove distribution function directly in the time domain, I(t), which reflects the system dynamics. Currently, I(t) is essentially determined from neutron energy-exchange. Our method consists of the straightforward measurement of the running time-integral of I(t), by computing the portion of scattered neutrons corresponding to species at rest within a time t, (conceptually elastic scattering). Previous attempts failed to recognise this connection. Starting from a theoretical standpoint, a practical realisation is assessed via numerical methods and an instrument simulation.

13.
Chemphyschem ; 9(9): 1331-7, 2008 Jun 23.
Article in English | MEDLINE | ID: mdl-18481338

ABSTRACT

The lack of practical methods for hydrogen storage is still a major bottleneck in the realization of an energy economy based on hydrogen as energy carrier.1 Storage within solid-state clathrate hydrates,2-4 and in the clathrate hydrate of tetrahydrofuran (THF), has been recently reported.5, 6 In the latter case, stabilization by THF is claimed to reduce the operation pressure by several orders of magnitude close to room temperature. Here, we apply in situ neutron diffraction to show that-in contrast to previous reports([5, 6])-hydrogen (deuterium) occupies the small cages of the clathrate hydrate only to 30 % (at 274 K and 90.5 bar). Such a D(2) load is equivalent to 0.27 wt. % of stored H(2). In addition, we show that a surplus of D(2)O results in the formation of additional D(2)O ice Ih instead of in the production of sub-stoichiometric clathrate that is stabilized by loaded hydrogen (as was reported in ref. 6). Structure-refinement studies show that [D(8)]THF is dynamically disordered, while it fills each of the large cages of [D(8)]THF17D(2)O stoichiometrically. Our results show that the clathrate hydrate takes up hydrogen rapidly at pressures between 60 and 90 bar (at about 270 K). At temperatures above approximately 220 K, the H-storage characteristics of the clathrate hydrate have similarities with those of surface-adsorption materials, such as nanoporous zeolites and metal-organic frameworks,7, 8 but at lower temperatures, the adsorption rates slow down because of reduced D(2) diffusion between the small cages.

15.
Sci Rep ; 6: 34266, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703184

ABSTRACT

A new type of neutron-scattering spectroscopy is presented that is designed specifically to measure dynamics in bio-systems that are difficult to obtain in any other way. The temporal information is largely model-free and is analogous to relaxation processes measured with dielectric spectroscopy, but provides additional spacial and geometric aspects of the underlying dynamics. Numerical simulations of the basic instrument design show the neutron beam can be highly focussed, giving efficiency gains that enable the use of small samples. Although we concentrate on continuous neutron sources, the extension to pulsed neutron sources is proposed, both requiring minimal data-treatment and being broadly analogous with dielectric spectroscopy, they will open the study of dynamics to new areas of biophysics.

16.
Nat Chem ; 8(3): 270-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26892560

ABSTRACT

The mechanical flexibility of coordination frameworks can lead to a range of highly anomalous structural behaviours. Here, we demonstrate the extreme compressibility of the LnFe(CN)6 frameworks (Ln = Ho, Lu or Y), which reversibly compress by 20% in volume under the relatively low pressure of 1 GPa, one of the largest known pressure responses for any crystalline material. We delineate in detail the mechanism for this high compressibility, where the LnN6 units act like torsion springs synchronized by rigid Fe(CN)6 units performing the role of gears. The materials also show significant negative linear compressibility via a cam-like effect. The torsional mechanism is fundamentally distinct from the deformation mechanisms prevalent in other flexible solids and relies on competition between locally unstable metal coordination geometries and the constraints of the framework connectivity, a discovery that has implications for the strategic design of new materials with exceptional mechanical properties.

17.
Dalton Trans ; 45(19): 8278-83, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27109447

ABSTRACT

Tris(acetylacteonate) iron(iii) is a relatively ubiquitous mononuclear inorganic coordination complex. The bidentate nature of the three acetylacteonate ligands coordinating around a single centre inevitably leads to structural isomeric forms, however whether or not this relates to chirality in the solid state has been questioned in the literature. Variable temperature neutron diffraction data down to T = 3 K, highlights the dynamic nature of the ligand environment, including the motions of the hydrogen atoms. The Fourier transform of the molecular dynamics simulation based on the experimentally determined structure was shown to closely reproduce the low temperature vibrational density of states obtained using inelastic neutron scattering.

18.
Sci Rep ; 6: 30530, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27456817

ABSTRACT

Phonons in condensed matter materials transmit energy through atomic lattices as coherent vibrational waves. Like electronic and photonic properties, an improved understanding of phononic properties is essential for the development of functional materials, including thermoelectric materials. Recently, an Einstein rattling mode was found in thermoelectric material Na0.8CoO2, due to the large displacement of Na between the [CoO2] layers. In this work, we have realized a different type of rattler in another thermoelectric material Ca3Co4O9 by chemical doping, which possesses the same [CoO2] layer as Na0.8CoO2. It remarkably suppressed the thermal conductivity while enhancing its electrical conductivity. This new type of rattler was investigated by inelastic neutron scattering experiments in conjunction with ab-initio molecular dynamics simulations. We found that the large mass of dopant rather than the large displacement is responsible for such rattling in present study, which is fundamentally different from skutterudites, clathrates as well as Na analogue. We have also tentatively studied the phonon band structure of this material by DFT lattice dynamics simulation, showing the relative contribution to phonons in the distinct layers of Ca3Co4O9.

20.
Angew Chem Int Ed Engl ; 37(3): 317-320, 1998 Feb 16.
Article in English | MEDLINE | ID: mdl-29711258

ABSTRACT

Intrinsic and extrinsic forces behind the distortion in metal atom clusters can be readily distinguished provided that the clusters are embedded in a suitable ligand environment and that the tunneling of the protons in the peripheral ligands is then analyzed by inelastic neutron scattering. For the [Cr3 O(OOCCH3 )6 (H2 O)3 ]Cl⋅6 H2 O model system studied, the tunneling process is very sensitive to the local environment. Thus a tool is available to allow a better assessment of the cause of structural distortions.

SELECTION OF CITATIONS
SEARCH DETAIL